Предмет: Геометрия,
автор: SoFansy23
Даны квадрат и прямоугольник с равными диагоналями.
Доказать, что площадь прямоугольника меньше площади квадрата.
Ответы
Автор ответа:
0
Площадь четырёхугольника вычисляется по формуле:
где d1 , d2 – диагонали четырёхугольника,
а – угол между диагоналями ( 0° < а ≤ 90° )
Диагонали квадрата пересекаются под прямым углом, а у прямоугольника – под острым углом.
_____________________________
Площадь квадрата:
Площадь прямоугольника:
______________________________
Сравним площади данных четырёхугольников:
S (k) V S (p)
( 1/2 ) × d² V ( 1/2 ) × d² × sina
1 V sina
“ V ” – знак сравнения ( < , = , > , ≤ , ≥ )
Все значения синуса принадлежат промежутку [ – 1 ; + 1 ] . В нашем случае подходит промежуток ( 0 ; 1 ]
Из этого следует, что единица – максимальное значение синуса угла , то есть sin90°. Значит, sinа < 1
Соответственно, площадь прямоугольника будет меньше площади квадрата, что и требовалось доказать.
где d1 , d2 – диагонали четырёхугольника,
а – угол между диагоналями ( 0° < а ≤ 90° )
Диагонали квадрата пересекаются под прямым углом, а у прямоугольника – под острым углом.
_____________________________
Площадь квадрата:
Площадь прямоугольника:
______________________________
Сравним площади данных четырёхугольников:
S (k) V S (p)
( 1/2 ) × d² V ( 1/2 ) × d² × sina
1 V sina
“ V ” – знак сравнения ( < , = , > , ≤ , ≥ )
Все значения синуса принадлежат промежутку [ – 1 ; + 1 ] . В нашем случае подходит промежуток ( 0 ; 1 ]
Из этого следует, что единица – максимальное значение синуса угла , то есть sin90°. Значит, sinа < 1
Соответственно, площадь прямоугольника будет меньше площади квадрата, что и требовалось доказать.
Похожие вопросы
Предмет: Алгебра,
автор: rdtyqjbbh6
Предмет: Литература,
автор: irina7777747
Предмет: Українська література,
автор: olegomelchenko93
Предмет: Обществознание,
автор: фурман2
Предмет: Математика,
автор: Riki17112