Площадь прямоугольного треугольника равна 11, а периметр 22.
Найдите длину высоты треугольника, которая проведена к гипотенузе.
Ответы
Катеты a, b
Гипотенуза с
Высота к гипотенузе h
--- 1 ---
Площадь через катеты
S = 1/2*a*b = 11
a*b = 22
--- 2 ---
Гипотенуза по т. Пифагора
c² = a² + b²
--- 3 ---
Периметр
P = a + b + c = 22
c = 22 - a - b
c² = a² + 2ab - 44a + b² - 44b + 484
вычтем отсюда выражение для гипотенузы по т. Пифагора
0 = 2ab - 44a - 44b + 484
ab - 22a - 22b + 242 = 0
Вычтем теперь выражение из пункта 1 для площади
- 22a - 22b + 220 = 0
- a - b = - 10
a + b = 10
b = 10 - a
--- 4 ---
Теперь снова выражение для площади из пункта 1
ab = 22
a(10 - a) = 22
-a² + 10a - 22 = 0
a² - 10a + 22 = 0
Решаем квадратное ур-е
a₁ = (10 - √(100 - 4*22))/2 = (10 - √12)/2 = 5 - √3
a₂ = (10 + √(100 - 4*22))/2 = (10 + √12)/2 = 5 + √3
Оба решения подходят, но в силу симметрии уравнений по a и b являются просто перестановкой этих двух переменных
Итак, катеты a = 5 - √3, b = 5 + √3
--- 5 ---
Гипотенуза
c² = a² + b² = (5 - √3)² + (5 + √3)² = 25 - 10√3 + 3 + 25 + 10√3 + 3 = 56
c = √56 = 2√14
--- 6 ---
Площадь через гипотенузу и высоту к ней
S = 1/2*c*h = 11
c*h = 22
2√14*h = 22
h = 11/√14 = 11√14/14