Предмет: Геометрия, автор: vadimkakimka

СРОЧНО!

В треугольнике ABC уголC= 90°, уголB= 30°, отрезок AD - биссектриса треугольника, CD= 7 см.
Найдите длину катета BC и биссектрису AD.

Ответы

Автор ответа: kfedorova
2

В прямоугольном треугольнике АВС угол С=90°, угол В=30°, следовательно, угол А=60°. AD - биссектриса, то есть делит угол А на два равных угла по 30°. Рассмотрим треугольник ADC. Угол С прямой, угол DAC равен 30°, так как AD - биссектриса. Катет CD, лежащий напротив угла в 30° равен половине гипотенузы, то есть AD=14 см. Теперь рассмотрим треугольник BAD. Угол В равен 30°, угол BAD равен 30°, так как AD медиана, то есть треугольник равнобедренный, BD=AD=14см. BC=CD+BD=7+14=21см.


vadimkakimka: спасибо вам огромное
vadimkakimka: извините ща беспокойство, можнете ли вы решить и другие мои задачи
Похожие вопросы