Предмет: Алгебра, автор: Nishinoyaa

решите тригонометрическое уравнение:
1) 4sin^2x-sin2x=3
2) sin2x+8sin^2x=5
3) 10cos^2x-2sin2x=3

Ответы

Автор ответа: snow99
2

1) \:  \: 4 {sin}^{2} x - sin2x = 3 \\ 4 {sin}^{2} x - sin2x - 3 = 0 \\ 4 {sin}^{2} x - 2sinxcosx - 3( {sin}^{2} x +  {cos}^{2} x) = 0 \\ 4 {sin}^{2} x - 2sinxcosx - 3 {sin}^{2} x - 3 {cos}^{2} x = 0 \\  {sin}^{2} x - 2sinxcosx - 3 {cos}^{2} x = 0 \\  \frac{ {sin}^{2} x}{ {cos}^{2} x}  -  \frac{2sinxcosx}{ {cos}^{2} x}  -  \frac{3 {cos}^{2} x}{ {cos}^{2} x}  = 0 \\  {tg}^{2} x - 2tgx - 3 = 0 \\ tgx = t \\  {t}^{2}  - 2t - 3 = 0 \\ d =  {b}^{2}  - 4ac = 4 - 4 \times ( - 3) = 16 \\ t1 =  \frac{2 + 4}{2}  = 3 \\ t2 =  \frac{2 - 4}{2}  =  - 1 \\ 1)tgx = 3 \\ x = arctg3 + \pi n \\ 2) tgx =  - 1 \\  x =  -  \frac{\pi}{4}  + \pi n
Ответ; arctg3 + pi*n; -pi/4 + pi*n, n € Z.

2)
sin2x + 8 {sin}^{2} x = 5 \\ sin2x + 8 {sin}^{2} x - 5 = 0 \\ 2sinxcosx + 8 {sin}^{2} x - 5( {sin}^{2} x +  {cos}^{2} x) = 0 \\2sinxcosx + 8 {sin}^{2} x - 5 {sin}^{2} x - 5 {cos}^{2} x = 0 \\ 3 {sin}^{2} x + 2sinxcosx - 5 {cos}^{2} x = 0 \\  \frac{3 {sin}^{2} x}{ {cos}^{2} x}  +  \frac{2sinxcosx}{ {cos}^{2}x }  -  \frac{5 {cos}^{2} x}{ {cos}^{2}x }  = 0 \\ 3 {tg}^{2} x + 2tgx - 5 = 0 \\ tgx = t \\ 3 {t}^{2}  + 2t - 5 = 0 \\ d =  {b}^{2}  - 4ac = 4 - 4 \times 3 \times ( - 5) = 64 \\ t1 =  \frac{ - 2 + 8}{2 \times 3}  =  \frac{6}{6}  = 1 \\ t2 =  \frac{ - 2 - 8}{2 \times 3}  =  \frac{ - 10}{6}  =  -  \frac{5}{3}  \\ 1)tgx = 1 \\ x =  \frac{\pi}{4}  + \pi n \\ 2)tgx =  -  \frac{5}{3}  \\ x =  - arctg \frac{5}{3}  + \pi n
Ответ: pi/4 + pi*n; -arctg5/3 + pi*n, n € Z.

3)
10 {cos}^{2} x - 2sin2x = 3 \\ 10 {cos}^{2} x - 4sin2x - 3 = 0 \\ 10 {cos}^{2} x - 4sinxcosx - 3( {sin}^{2} x +  {cos}^{2} x ) = 0 \\ 10 {cos}^{2} x - 4sinxcosx - 3 {sin}^{2} x - 3 {cos}^{2} x = 0 \\ 7 {cos}^{2} x - 4sinxcosx  - 3 {sin}^{2} x = 0 \\  \frac{7 {cos}^{2} x}{ {cos}^{2} x}  -  \frac{4sinxcosx}{ {cos}^{2}x }  -  \frac{3 {sin}^{2} x}{ {cos}^{2} x}  = 0 \\ 7 - 4tgx - 3 {tg}^{2} x = 0 \\ 3 {tg}^{2} x + 4tgx - 7 = 0 \\ tgx = t \\ 3 {t}^{2}  + 4t - 7 = 0 \\ d =  {b}^{2}  - 4ac = 16 - 4 \times 3 \times ( - 7 ) = 100 \\ t1 =  \frac{ - 4 + 10}{2 \times 3}  =  \frac{6}{6}  = 1 \\ t2 =  \frac{ - 4 - 10}{2 \times 3}  =  \frac{ - 14}{6}  =   -  \frac{7}{3}  \\ 1)tgx = 1 \\ x =  \frac{\pi}{4}  + \pi n \\ 2)tgx =  -  \frac{7}{3}  \\ x =  - arctg \frac{7}{3}  + \pi n
Ответ: pi/4 + pi*n; -arctg7/3 + pi*n, n € Z.
Похожие вопросы
Предмет: Математика, автор: asemakasymovaw
Предмет: Алгебра, автор: boogymm