Предмет: Алгебра,
автор: zuxapo
Помогите решить пример
sin^4(x)+cos^4(x)=3/4
Ответы
Автор ответа:
2
sin⁴x + cos⁴x = 3/4
sin⁴x + 2sin²x*cos²x + cos⁴x - 2sin²x*cos²x = 3/4
(sin²x + cos²x)² - 2sin²xcos²x = 3/4
1 - 2sin²x*cos²x = 3/4
2sin²x*cos²x = 1 - 3/4
2sin²x*cos²x = 1/4
1/2 * (2sinx*cosx)² = 1/4
(2sinx*cosx)² = 1/2
sin²2x = 1/2
(1 - cos4x)/2 = 1/2
1 - cos4x = 1
cos4x = 0
4x = π/2 + πn, n ∈ Z
x = π/8 + πn/4, n ∈ Z
Ответ: π/8 + πn/4, n ∈ Z.
sin⁴x + 2sin²x*cos²x + cos⁴x - 2sin²x*cos²x = 3/4
(sin²x + cos²x)² - 2sin²xcos²x = 3/4
1 - 2sin²x*cos²x = 3/4
2sin²x*cos²x = 1 - 3/4
2sin²x*cos²x = 1/4
1/2 * (2sinx*cosx)² = 1/4
(2sinx*cosx)² = 1/2
sin²2x = 1/2
(1 - cos4x)/2 = 1/2
1 - cos4x = 1
cos4x = 0
4x = π/2 + πn, n ∈ Z
x = π/8 + πn/4, n ∈ Z
Ответ: π/8 + πn/4, n ∈ Z.
NeZeRAvix:
cos4x=0 ⇒ 4x=п/2+пn
Автор ответа:
1
Для четвертых степеней есть готовые формулы
При их использовании уравнение сводится к
Но обычно такие уравнения решают дополнением левой части до полного квадрата
Похожие вопросы
Предмет: Математика,
автор: Xospodi
Предмет: Русский язык,
автор: anelshamil08
Предмет: Русский язык,
автор: Jiafei
Предмет: Химия,
автор: AnyaPanda666