Предмет: Геометрия,
автор: Аноним
Помогите пожалуйста
Приложения:
Ответы
Автор ответа:
0
Пусть ΔАВС - равносторонний, AM i ВК - биссектрисы, пересекаются в т. А.
Докажем, что АО: ОМ = 2: 1.
В ΔАВС ∟А = ∟B = ∟С = 60 °.
∟ABK = ∟KBC = 1 / 2∟B = 60 °: 2 = 30 ° (ВК - биссектриса ∟B).
∟BAM = ∟MAC = 1 / 2∟A = 60 °: 2 = 30 ° (АМ - биссектриса ∟A).
В ΔABC равностороннем биссектриса является высотой. AM ┴ ВС, ВК ┴ АС.
Рассмотрим ΔВОМ (∟M = 90 °, AM ┴ ВС).
Пусть ОМ = х, тогда ОВ = 2 • ОМ = 2х (поскольку ∟OBM = 30 °).
Рассмотрим ΔАОВ:
∟BAO = ∟ABO = 30 °, тогда ΔАОВ - равнобедренный с основанием АВ.
Итак, АО = ВО = 2х.
АО: ОМ = 2х х = 2: 1.
Докажем, что АО: ОМ = 2: 1.
В ΔАВС ∟А = ∟B = ∟С = 60 °.
∟ABK = ∟KBC = 1 / 2∟B = 60 °: 2 = 30 ° (ВК - биссектриса ∟B).
∟BAM = ∟MAC = 1 / 2∟A = 60 °: 2 = 30 ° (АМ - биссектриса ∟A).
В ΔABC равностороннем биссектриса является высотой. AM ┴ ВС, ВК ┴ АС.
Рассмотрим ΔВОМ (∟M = 90 °, AM ┴ ВС).
Пусть ОМ = х, тогда ОВ = 2 • ОМ = 2х (поскольку ∟OBM = 30 °).
Рассмотрим ΔАОВ:
∟BAO = ∟ABO = 30 °, тогда ΔАОВ - равнобедренный с основанием АВ.
Итак, АО = ВО = 2х.
АО: ОМ = 2х х = 2: 1.
Похожие вопросы
Предмет: Математика,
автор: aduba485
Предмет: Математика,
автор: 1saparovazara1
Предмет: Математика,
автор: Benzzy
Предмет: Математика,
автор: василий57