Предмет: Математика, автор: robinzon418114

Натуральные числа а1,а2,а3,...а49 таковы, что а1+а2+а3+...+a49=540

Найдите наибольшее возможное значение наибольшего общего делителя этих чисел

Ответы

Автор ответа: igorShap
6

Заметим, что НОД чисел не больше любого из них.

Тогда НОД≤540/49=11 1/49. Так как НОД целое число и нам нужно наибольшее значение, будем рассматривать случаи для НОД = 11 и меньше.

Пусть НОД равен 11. Тогда наименьшая возможная сумма чисел равна 11*49=539=540-1. Получается, что единственный набор чисел, который мог бы удовлетворять условию, это 48 чисел 11 и одно число 12. Но 12 не кратно 11, поэтому этот случай отпадает.

Пусть НОД=10. Тогда наименьшая возможная сумма чисел равна 10*49=490=540-50. Нетрудно заметить, что набор из 48 чисел 10 и одного числа 60 удовлетворяет условию.

Значит максимальное значение НОД таких чисел равно 10.

Похожие вопросы
Предмет: Геометрия, автор: sasabezusko151
Предмет: Алгебра, автор: marcenkoa183
Предмет: Математика, автор: anasteisha72