Предмет: Алгебра,
автор: Evlampiya8
Прошу, помогите с заданием.
Приложения:

Ответы
Автор ответа:
1
1
![\frac{1}{ \sqrt[3]{9} } = \frac{ \sqrt[3]{3} }{ \sqrt[ 3]{9} \times \sqrt[3]{3} } = \frac{ \sqrt[3]{3} }{ \sqrt[3]{27} } = \frac{ \sqrt[3]{3} }{3} \frac{1}{ \sqrt[3]{9} } = \frac{ \sqrt[3]{3} }{ \sqrt[ 3]{9} \times \sqrt[3]{3} } = \frac{ \sqrt[3]{3} }{ \sqrt[3]{27} } = \frac{ \sqrt[3]{3} }{3}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B+%5Csqrt%5B3%5D%7B9%7D+%7D++%3D++%5Cfrac%7B+%5Csqrt%5B3%5D%7B3%7D+%7D%7B+%5Csqrt%5B+3%5D%7B9%7D++%5Ctimes++%5Csqrt%5B3%5D%7B3%7D+%7D++%3D++%5Cfrac%7B+%5Csqrt%5B3%5D%7B3%7D+%7D%7B+%5Csqrt%5B3%5D%7B27%7D+%7D++%3D++%5Cfrac%7B+%5Csqrt%5B3%5D%7B3%7D+%7D%7B3%7D+)
2.
![\frac{4}{ \sqrt[3]{7} - \sqrt[3]{3} } = \frac{4( \sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}} )}{( \sqrt[3]{7} - \sqrt[3]{3} )(\sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}} )}= \frac{4(\sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}})}{ \sqrt[3]{ {7}^{3} } - \sqrt[3]{ {3}^{3} } } = \frac{4 \times (\sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}})}{7 - 3} = \frac{4(\sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}})}{4} = \sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}} = \sqrt[3]{49} + \sqrt[3]{21} + \sqrt[3]{9} \frac{4}{ \sqrt[3]{7} - \sqrt[3]{3} } = \frac{4( \sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}} )}{( \sqrt[3]{7} - \sqrt[3]{3} )(\sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}} )}= \frac{4(\sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}})}{ \sqrt[3]{ {7}^{3} } - \sqrt[3]{ {3}^{3} } } = \frac{4 \times (\sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}})}{7 - 3} = \frac{4(\sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}})}{4} = \sqrt[3]{ {7}^{2} } + \sqrt[3]{7} \times \sqrt[3]{3} + \sqrt[3]{ {3}^{2}} = \sqrt[3]{49} + \sqrt[3]{21} + \sqrt[3]{9}](https://tex.z-dn.net/?f=+%5Cfrac%7B4%7D%7B+%5Csqrt%5B3%5D%7B7%7D++-++%5Csqrt%5B3%5D%7B3%7D+%7D++%3D++%5Cfrac%7B4%28+%5Csqrt%5B3%5D%7B+%7B7%7D%5E%7B2%7D+%7D++++%2B++%5Csqrt%5B3%5D%7B7%7D++%5Ctimes++%5Csqrt%5B3%5D%7B3%7D+++%2B++%5Csqrt%5B3%5D%7B+%7B3%7D%5E%7B2%7D%7D+%29%7D%7B%28+%5Csqrt%5B3%5D%7B7%7D++-++%5Csqrt%5B3%5D%7B3%7D+%29%28%5Csqrt%5B3%5D%7B+%7B7%7D%5E%7B2%7D+%7D++++%2B++%5Csqrt%5B3%5D%7B7%7D++%5Ctimes++%5Csqrt%5B3%5D%7B3%7D+++%2B++%5Csqrt%5B3%5D%7B+%7B3%7D%5E%7B2%7D%7D++%29%7D%3D++%5Cfrac%7B4%28%5Csqrt%5B3%5D%7B+%7B7%7D%5E%7B2%7D+%7D++++%2B++%5Csqrt%5B3%5D%7B7%7D++%5Ctimes++%5Csqrt%5B3%5D%7B3%7D+++%2B++%5Csqrt%5B3%5D%7B+%7B3%7D%5E%7B2%7D%7D%29%7D%7B+%5Csqrt%5B3%5D%7B+%7B7%7D%5E%7B3%7D+%7D++-++%5Csqrt%5B3%5D%7B+%7B3%7D%5E%7B3%7D+%7D+%7D++%3D++%5Cfrac%7B4+%5Ctimes+%28%5Csqrt%5B3%5D%7B+%7B7%7D%5E%7B2%7D+%7D++++%2B++%5Csqrt%5B3%5D%7B7%7D++%5Ctimes++%5Csqrt%5B3%5D%7B3%7D+++%2B++%5Csqrt%5B3%5D%7B+%7B3%7D%5E%7B2%7D%7D%29%7D%7B7+-+3%7D++%3D++%5Cfrac%7B4%28%5Csqrt%5B3%5D%7B+%7B7%7D%5E%7B2%7D+%7D++++%2B++%5Csqrt%5B3%5D%7B7%7D++%5Ctimes++%5Csqrt%5B3%5D%7B3%7D+++%2B++%5Csqrt%5B3%5D%7B+%7B3%7D%5E%7B2%7D%7D%29%7D%7B4%7D++%3D+%5Csqrt%5B3%5D%7B+%7B7%7D%5E%7B2%7D+%7D++++%2B++%5Csqrt%5B3%5D%7B7%7D++%5Ctimes++%5Csqrt%5B3%5D%7B3%7D+++%2B++%5Csqrt%5B3%5D%7B+%7B3%7D%5E%7B2%7D%7D+%3D++%5Csqrt%5B3%5D%7B49%7D++%2B++%5Csqrt%5B3%5D%7B21%7D++%2B++%5Csqrt%5B3%5D%7B9%7D+)
2.
Автор ответа:
1
Похожие вопросы
Предмет: Алгебра,
автор: 87752911109
Предмет: Английский язык,
автор: nazlialiyeva2008
Предмет: Математика,
автор: todjvolk
Предмет: Математика,
автор: незнайка601