Предмет: Математика, автор: LinaFedorova

Помогите с решением!
log_2(x+4)>=log_(4x+16)(8)


sangers: log₂(x+4)≥log₍₄ₓ₊₁₆₎8 - я правильно записал условие задачи?
LinaFedorova: да

Ответы

Автор ответа: InvisorTech
1

 \log_{2}(x+4) \ge \log_{(4x+16)}8 \\ \\ ODZ: \ $\left\{ <br />      \begin{gathered} <br />        x + 4 &gt; 0 \\ <br />        4x+16 &gt; 0 \\ 4x + 16 \ne 1<br />      \end{gathered} <br />\right.$ \ ; \ $\left\{ <br />      \begin{gathered} <br />        x &gt; -4 \\ <br />        x \ne -\dfrac{15}{4} \\ <br />      \end{gathered} <br />\right.$ \ ; \ x \in (-4;-\dfrac{15}{4})\cup ( -\dfrac{15}{4}; +\infty)


 \log_{2}(x+4) \ge \dfrac{1}{\log_{8}(4x+16)} \\ \\ \log_{2}(x+4) \ge \dfrac{1}{\frac{1}{3}\log_{2}(4x+16)} \\ \\ \log_{2}(x+4) \ge \dfrac{3}{\log_{2}(4(x+4))} \\ \\ \log_{2}(x+4) \ge \dfrac{3}{\log_{2}(4) + \log_{2}(x+4)} \\ \\ \log_{2}(x+4) \ge \dfrac{3}{2 + \log_{2}(x+4)} \\ \\ \log_{2}(x+4) = t \\ \\ t \ge \dfrac{3}{2+t} \\ \\ \dfrac{t^{2}+2t-3}{2+t} \ge 0  \\ \\ \dfrac{(t-1)(t+3)}{2+t} \ge 0 \ (1)


 $\left[ <br />      \begin{gathered} <br />        -3 \le t &lt; -2  \\ <br />        t \ge 1 \\ <br />      \end{gathered} <br />\right.$


 $\left[ <br />      \begin{gathered} <br />      -3 \le \log_{2}(x+4) &lt; -2 \\ <br />        \log_{2}(x+4) \ge 1 \\ <br />      \end{gathered} <br />\right.$


 $\left[ <br />      \begin{gathered} <br />       $\left\{ <br />      \begin{gathered} <br />        \log_{2}(x+4) \ge -3 \\ <br />        \log_{2}(x+4) &lt; -2 \\ <br />      \end{gathered} <br />\right.$ \\ <br />        \log_{2}(x+4) \ge 1 \\ <br />      \end{gathered} <br />\right.$


 $\left[ <br />      \begin{gathered} <br />       $\left\{ <br />      \begin{gathered} <br />        \log_{2}(x+4) \ge \log_{2}2^{-3} \\ <br />        \log_{2}(x+4) &lt; \log_{2}2^{-2} \\ <br />      \end{gathered} <br />\right.$ \\ <br />        \log_{2}(x+4) \ge \log_{2}2^{1} \\ <br />      \end{gathered} <br />\right.$


 $\left[ <br />      \begin{gathered} <br />       $\left\{ <br />      \begin{gathered} <br />        x+4 \ge 2^{-3} \\ <br />        x+4 &lt; 2^{-2} \\ <br />      \end{gathered} <br />\right.$ \\ <br />        x+4 \ge 2 \\ <br />      \end{gathered} <br />\right.$


 $\left[ <br />      \begin{gathered} <br />       $\left\{ <br />      \begin{gathered} <br />        x \ge -\dfrac{31}{8} \\ <br />        x &lt; -\dfrac{15}{4} \\ <br />      \end{gathered} <br />\right.$ \\ <br />        x \ge -2 \\ <br />      \end{gathered} <br />\right.$


 x \in [-\dfrac{31}{8}; -\dfrac{15}{4}) \cup [-2;+\infty)


С учётом ОДЗ (2):

 x \in [-\dfrac{31}{8}; -\dfrac{15}{4}) \cup [-2;+\infty)


Ответ: x ∈ [-31/8; -15/4)∪ [-2; +∞)

Приложения:
Похожие вопросы