Предмет: Геометрия,
автор: romaedoe
Найти угол между стороной АС и медиане ВМ треугольника ABC, если a (-5. -7. 3) B (4. 2. -2) C (3. 5. -5.)
Ответы
Автор ответа:
0
точка М
М = (А+С)/2 = ((-5; -7; 3) + (3; 5; -5))/2 = (-2; -2; -2)/2 = (-1; -1; -1)
Вектор ВМ
ВМ = М - В = (-1; -1; -1) - (4; 2; -2) = (-5; -3; 1)
Вектор АС
АС = С - А = (3; 5; -5) - (-5; -7; 3) = (8; 12; -8)
Скалярное произведение АС и ВМ
АС·ВМ = 8*(-5) + 12*(-3) - 8*1 = - 40 - 36 - 8 = - 84
Модули векторов
|АС| = √(8² + 12² + 8²) = √272 = 4√17
|BM| = √(5² + 3² + 1²) = √35
Косинус угла между векторами
cos(β) = АС·ВМ/(|АС|*|BM|) = -84/(4√17*√35) = -3√(7/85)
Внутренний угол ∠АМВ треугольника АВМ тупой, и равен arccos(-3√(7/85)) ≈ 149.4°
В качестве угла между прямыми принято указывать острый угол
180 - arccos(-3√(7/85)) ≈ 30.6°
М = (А+С)/2 = ((-5; -7; 3) + (3; 5; -5))/2 = (-2; -2; -2)/2 = (-1; -1; -1)
Вектор ВМ
ВМ = М - В = (-1; -1; -1) - (4; 2; -2) = (-5; -3; 1)
Вектор АС
АС = С - А = (3; 5; -5) - (-5; -7; 3) = (8; 12; -8)
Скалярное произведение АС и ВМ
АС·ВМ = 8*(-5) + 12*(-3) - 8*1 = - 40 - 36 - 8 = - 84
Модули векторов
|АС| = √(8² + 12² + 8²) = √272 = 4√17
|BM| = √(5² + 3² + 1²) = √35
Косинус угла между векторами
cos(β) = АС·ВМ/(|АС|*|BM|) = -84/(4√17*√35) = -3√(7/85)
Внутренний угол ∠АМВ треугольника АВМ тупой, и равен arccos(-3√(7/85)) ≈ 149.4°
В качестве угла между прямыми принято указывать острый угол
180 - arccos(-3√(7/85)) ≈ 30.6°
romaedoe:
КАЗАК https://znanija.com/task/29301197
Похожие вопросы
Предмет: Музыка,
автор: gogodzerusudan
Предмет: Алгебра,
автор: Glebushek13
Предмет: Оʻzbek tili,
автор: gulnaratabjibaeva
Предмет: Биология,
автор: ZzzauchKa