Предмет: Геометрия,
автор: Lenka555555555
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC равно 19 см, а расстояние от точки K до стороны AB равно 10.
Ответы
Автор ответа:
2
BC = 19; KH = 10; Рассмотрим треугольники AKB и BKM (на рисунке одинаковыми цветами отмечены равные углы). Поскольку у них равны два угла, то у них равны и третьи. Т.е ∠BKA = ∠BKM = 180°/2 = 90°. Значит биссектрисы пересекаются под прямым углом. Δ ABN - равнобедренный. Значит BK = KN, в силу того, что AK - медиана. Также Δ ABM равнобедренный. Значит AK = KM; Δ AKN = Δ BKM по двум сторонам и углу между ними. В равных треугольниках равны соответствующие элементы, значит высоты TK и KE равны. Треугольники HBK и TBK равны по углу и общей гипотенузе. Следовательно HK = KT = KE; Теперь найдем площадь S. S = BC*(TK+KE) = 2*BC*HK = 2*19*10 = 380
Guerrino:
аааа, забыл рисунок :(
Похожие вопросы
Предмет: Математика,
автор: soffasova
Предмет: Обществознание,
автор: samiranadyrovna
Предмет: Русский язык,
автор: leronkkaaa13
Предмет: Математика,
автор: Елизавета27345
Предмет: История,
автор: ХомякХома1