Предмет: Алгебра,
автор: remixzx60
sin 2х + 2cosx= sinx+1 решите тригонометрические уравнивание различных типов
Ответы
Автор ответа:
0
2cosxsinx+2cosx=1+sinx
2cosx(sinx+1)=1+sinx
Разделим на sinx+1≠0⇒x≠3пи/2+2пиk, k∈Z (чтобы не потерять корень)
2 cosx=1
cosx=1/2
x1=пи/3+2пиk, k∈Z
x2=5пи/3+2пиk, k∈Z
х3=3пи/2+2пиk, k∈Z
2cosx(sinx+1)=1+sinx
Разделим на sinx+1≠0⇒x≠3пи/2+2пиk, k∈Z (чтобы не потерять корень)
2 cosx=1
cosx=1/2
x1=пи/3+2пиk, k∈Z
x2=5пи/3+2пиk, k∈Z
х3=3пи/2+2пиk, k∈Z
Похожие вопросы
Предмет: Английский язык,
автор: egorefremov207
Предмет: Биология,
автор: Nastia1127
Предмет: Физика,
автор: Killer46112
Предмет: Математика,
автор: kordayasel
Предмет: Математика,
автор: Аноним