Предмет: Математика,
автор: Noname0075
Решить систему уравнений x+y=10 xy=12
Ответы
Автор ответа:
1
{y = 10 - x
{x(10-x) = 12
{y = 10 - x
{x² - 10x + 12 = 0
D = 100 - 48 = 52
x₁ = (10 - 2√13)/2 = 5 - √13
x₂ = 5 + √13
y₁ = 5 + √13
y₂ = 5 - √13
Ответ: (5 - √13; 5 + √13), (5 + √13, 5 - √13)
{x(10-x) = 12
{y = 10 - x
{x² - 10x + 12 = 0
D = 100 - 48 = 52
x₁ = (10 - 2√13)/2 = 5 - √13
x₂ = 5 + √13
y₁ = 5 + √13
y₂ = 5 - √13
Ответ: (5 - √13; 5 + √13), (5 + √13, 5 - √13)
amax777:
Эх.... вам на сайт неплохо бы добавить такую вещь, пока ты отвечаешь, можно видеть, что кто-то уже ответил и можно прекратить писать)
Автор ответа:
1
x + y = 10
x y = 12
Из первого уравнения: y = 10 - x
Подставим во второе:
x (10 - x) = 12
10 x - x^2 = 12
x^2 - 10 x + 12 = 0
D = 100 - 48 = 52
x = (10 (+/-) 2 sqr(13))/2
x = 5 (+/-) sqr(13)
y = 10 - x
y = 5 (-/+) sqr(13)
x y = 12
Из первого уравнения: y = 10 - x
Подставим во второе:
x (10 - x) = 12
10 x - x^2 = 12
x^2 - 10 x + 12 = 0
D = 100 - 48 = 52
x = (10 (+/-) 2 sqr(13))/2
x = 5 (+/-) sqr(13)
y = 10 - x
y = 5 (-/+) sqr(13)
Похожие вопросы
Предмет: Математика,
автор: mm6844126
Предмет: Геометрия,
автор: zblackarrowz
Предмет: Другие предметы,
автор: nikolaidauhashei
Предмет: Математика,
автор: arinamakarova72