Предмет: Математика,
автор: FastPlay
log11(8x^2+7) -log11(x^2+x+1)=>log11(x/(x+5) +7)
Ответы
Автор ответа:
31
ОДЗ: x/(x+5) + 7 > 0
(x+7x+35)/(x+5) > 0
(8x+35)/(x+5) > 0
__+___(-5)__-____(-35/8)___+___
![log_{11}(8x^2+7)-log_{11}(x^2+x+1) \geq log_{11}( \frac{x}{x+5} +7)\\\\ log_{11} \frac{8x^2+7}{x^2+x+1} \geq log_{11}( \frac{x}{x+5} +7)\\\\ \frac{8x^2+7}{x^2+x+1} \geq \frac{x}{x+5} +7\\\\ \frac{(8x^2+7)(x+5)-x(x^2+x+1)-7(x^2+x+1)(x+5)}{(x^2+x+1)(x+5)} \geq 0\\\\ \frac{8x^3+40x^2+7x+35-x^3-x^2-x-7x^3-42x^2-42x-35}{(x^2+x+1)(x+5)} \geq 0\\\\ \frac{-3x^2-36x}{(x^2+x+1)(x+5)} \geq 0\\\\ --+-[-12]-----(-5)----+-----[0]-----\\\\ x\in (-\infty;-12]U(-4,375;0]-s-ODZ log_{11}(8x^2+7)-log_{11}(x^2+x+1) \geq log_{11}( \frac{x}{x+5} +7)\\\\ log_{11} \frac{8x^2+7}{x^2+x+1} \geq log_{11}( \frac{x}{x+5} +7)\\\\ \frac{8x^2+7}{x^2+x+1} \geq \frac{x}{x+5} +7\\\\ \frac{(8x^2+7)(x+5)-x(x^2+x+1)-7(x^2+x+1)(x+5)}{(x^2+x+1)(x+5)} \geq 0\\\\ \frac{8x^3+40x^2+7x+35-x^3-x^2-x-7x^3-42x^2-42x-35}{(x^2+x+1)(x+5)} \geq 0\\\\ \frac{-3x^2-36x}{(x^2+x+1)(x+5)} \geq 0\\\\ --+-[-12]-----(-5)----+-----[0]-----\\\\ x\in (-\infty;-12]U(-4,375;0]-s-ODZ](https://tex.z-dn.net/?f=log_%7B11%7D%288x%5E2%2B7%29-log_%7B11%7D%28x%5E2%2Bx%2B1%29+%5Cgeq+log_%7B11%7D%28+%5Cfrac%7Bx%7D%7Bx%2B5%7D+%2B7%29%5C%5C%5C%5C+log_%7B11%7D+%5Cfrac%7B8x%5E2%2B7%7D%7Bx%5E2%2Bx%2B1%7D+%5Cgeq+log_%7B11%7D%28+%5Cfrac%7Bx%7D%7Bx%2B5%7D+%2B7%29%5C%5C%5C%5C+%5Cfrac%7B8x%5E2%2B7%7D%7Bx%5E2%2Bx%2B1%7D+%5Cgeq+%5Cfrac%7Bx%7D%7Bx%2B5%7D+%2B7%5C%5C%5C%5C+%5Cfrac%7B%288x%5E2%2B7%29%28x%2B5%29-x%28x%5E2%2Bx%2B1%29-7%28x%5E2%2Bx%2B1%29%28x%2B5%29%7D%7B%28x%5E2%2Bx%2B1%29%28x%2B5%29%7D+%5Cgeq+0%5C%5C%5C%5C+%5Cfrac%7B8x%5E3%2B40x%5E2%2B7x%2B35-x%5E3-x%5E2-x-7x%5E3-42x%5E2-42x-35%7D%7B%28x%5E2%2Bx%2B1%29%28x%2B5%29%7D+%5Cgeq+0%5C%5C%5C%5C+%5Cfrac%7B-3x%5E2-36x%7D%7B%28x%5E2%2Bx%2B1%29%28x%2B5%29%7D+%5Cgeq+0%5C%5C%5C%5C+--%2B-%5B-12%5D-----%28-5%29----%2B-----%5B0%5D-----%5C%5C%5C%5C+x%5Cin+%28-%5Cinfty%3B-12%5DU%28-4%2C375%3B0%5D-s-ODZ)
(x+7x+35)/(x+5) > 0
(8x+35)/(x+5) > 0
__+___(-5)__-____(-35/8)___+___
hote:
в логарифмах обязательно ОДЗ
да вы правы hote
Автор ответа:
18
log ₁₁(8x²+7) - log ₁₁(x²+x+1)≥ log ₁₁(x /(x+5) + 7)
ОДЗ 8x²+7> 0 при любом значении х
x²+x+1 >0 при любом значении х
х+5≠0 х≠-5
x /(x+5) + 7 >0
x+7*(x+5)
-------------------- >0
x+5
8x+35
------------ >0
x+5




ОДЗ x∈(-∞;-5)∪(-4 3/8 ;+∞)
log ₁₁(8x²+7) /(x²+x+1)≥ log ₁₁(x /(x+5) + 7)
(8x²+7)/(x²+x+1) - (8x +35) /(x+5) ≥ 0
(8x²+7)(x+5) - (8x +35)(x²+x+1)
-------------------------------------------------- ≥ 0
(x²+x+1)(x+5)
8х³+7х+40х²+35-8х³-35х-8х²-35х²-8х-35
---------------------------------------------------------- ≥ 0
(x²+x+1)(x+5)
-3х²-36х
-------------------- ≥ 0
(x²+x+1)(x+5)
+ - + -
______-12______-5_________0______________
Ответ с учетом ОДЗ (-∞;-12) ∪ (-4 3/8 ;0]
ОДЗ 8x²+7> 0 при любом значении х
x²+x+1 >0 при любом значении х
х+5≠0 х≠-5
x /(x+5) + 7 >0
x+7*(x+5)
-------------------- >0
x+5
8x+35
------------ >0
x+5
ОДЗ x∈(-∞;-5)∪(-4 3/8 ;+∞)
log ₁₁(8x²+7) /(x²+x+1)≥ log ₁₁(x /(x+5) + 7)
(8x²+7)/(x²+x+1) - (8x +35) /(x+5) ≥ 0
(8x²+7)(x+5) - (8x +35)(x²+x+1)
-------------------------------------------------- ≥ 0
(x²+x+1)(x+5)
8х³+7х+40х²+35-8х³-35х-8х²-35х²-8х-35
---------------------------------------------------------- ≥ 0
(x²+x+1)(x+5)
-3х²-36х
-------------------- ≥ 0
(x²+x+1)(x+5)
+ - + -
______-12______-5_________0______________
Ответ с учетом ОДЗ (-∞;-12) ∪ (-4 3/8 ;0]
нельзя отбрасывать знаменатель в неравенстве
Похожие вопросы
Предмет: Литература,
автор: dashabro890
Предмет: Химия,
автор: alekszaicev996
Предмет: Математика,
автор: grrrinaagr
Предмет: Математика,
автор: Аноним
Предмет: Физика,
автор: Евсевия1