Предмет: Математика,
автор: mvh
В окружность с центром о вписан угол авс величиной в 30 градусов, причем хорда ас имеет длину 2 см.
Найди:площадь сектора аос и периметр треугольника аос.
Ответы
Автор ответа:
0
Поскольку угол вписан в окружность, значит треугольник АВС - равнобедренный. Угол ВАС равен углу ВСА (180-30)/2=150/2=75
ОВ-является гипотенузой угла А, а треугольник АОВ - равнобедренный -поскольку ОВ=ОА=радиусу окружности. Значит угол ВАО равен углу АВО и равен 15 градусам. Значит в треугольнике АОС угол ОАС равен 75-15=60 градусов. т. к. треугольник АОС равнобедренный, поскольку АО=ОС=радиус окр., следовательно треугольник АОС - равносторонний и периметр этого треугольника равен Р=3*2=6 см
Зная радиус и центральный угол можно узнать площадь сектора.
S=2.09(3)
или 2 если округлить число пи до 3
ОВ-является гипотенузой угла А, а треугольник АОВ - равнобедренный -поскольку ОВ=ОА=радиусу окружности. Значит угол ВАО равен углу АВО и равен 15 градусам. Значит в треугольнике АОС угол ОАС равен 75-15=60 градусов. т. к. треугольник АОС равнобедренный, поскольку АО=ОС=радиус окр., следовательно треугольник АОС - равносторонний и периметр этого треугольника равен Р=3*2=6 см
Зная радиус и центральный угол можно узнать площадь сектора.
S=2.09(3)
или 2 если округлить число пи до 3
Похожие вопросы
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: Аноним
Предмет: Химия,
автор: White12311
Предмет: Обществознание,
автор: D361L