Предмет: Алгебра, автор: Batyr41115362

выразите логарифм пожалуйста

Приложения:

vladoleyp8x2va: зачем отметил как нарушение ? теперь не могу править
vladoleyp8x2va: да ня написано под заданием что отмечен как нарушение
vladoleyp8x2va: отлично просто
vladoleyp8x2va: удаляй вопрос и делай его заново - я уже не могу править
vladoleyp8x2va: заглавие тоже будет ?

Ответы

Автор ответа: hote
0
дано: 
\displaystyle log_{12}6=a

преобразуем

\displaystyle log_{12}6= \frac{log_26}{log_212}= \frac{log_22*3}{log_24*3}= \frac{1+log_23}{2+log_23}=a\\\\1+log_23=2a+alog_23\\\\log_23(1-a)=2a-1\\\\log_23= \frac{2a-1}{1-a}

дано:
\displaystyle log_{12}11=b

преобразуем:
\displaystyle log_{12}11= \frac{log_211}{log_212}= \frac{log_211}{log_24*3}= \frac{log_211}{2+log_23}=b\\\\log_211=b(2+log_23)=b(2+ \frac{2a-1}{1-a})=b( \frac{2-2a+2a-1}{1-a})= \frac{b}{1-a}

теперь основное выражение: 

\displaystyle log_{24}132= \frac{log_2132}{log_224}= \frac{log_211*4*3}{log_28*3}= \frac{log_211+2+log_23}{3+log_23}\\\\

теперь подставим: 

\displaystyle  \frac{log_211+2+log_23}{3+log_23}= \frac{ \frac{b}{1-a}+2+ \frac{2a-1}{1-a}}{3+ \frac{2a-1}{1-a}}= \frac{ \frac{b+2-2a+2a-1}{1-a}}{ \frac{3-3a+2a-1}{1-a}}=\\\\= \frac{ \frac{b+1}{1-a}}{ \frac{2-a}{1-a}}= \frac{b+1}{2-a}



Похожие вопросы
Предмет: Алгебра, автор: Daild
Предмет: Математика, автор: toshadenisov200