Предмет: Математика,
автор: NikitaKametskiy2002
Сформулировать и доказать теорему Пифагора
Ответы
Автор ответа:
1
Одним из наиболее популярных в учебной литературе доказательств алгебраической формулировки является доказательство с использованием техники подобия треугольников, при этом оно почти непосредственно выводится из аксиом и не задействует понятие площади фигуры. В нём для треугольника {\displaystyle \triangle ABC} с прямым углом при вершине {\displaystyle C} со сторонами {\displaystyle a,b,c}, противолежащими вершинам {\displaystyle A,B,C}соответственно, проводится высота {\displaystyle CH}, при этом (согласно признаку подобия по равенству двух углов) возникают соотношения подобия: {\displaystyle \triangle ABC\sim \triangle ACH} и {\displaystyle \triangle ABC\sim \triangle CBH}, из чего непосредственно следуют соотношения:
{\displaystyle {\frac {a}{c}}={\frac {|HB|}{a}}}; {\displaystyle {\frac {b}{c}}={\frac {|AH|}{b}}}.
При перемножении крайних членовпропорций выводятся равенства:
{\displaystyle a^{2}=c\cdot |HB|}; {\displaystyle b^{2}=c\cdot |AH|},
покомпонентное сложение которых даёт требуемый результат:
{\displaystyle a^{2}+b^{2}=c\cdot \left(|HB|+|AH|\right)=c^{2}\,\Leftrightarrow \,a^{2}+b^{2}=c^{2}}.
{\displaystyle {\frac {a}{c}}={\frac {|HB|}{a}}}; {\displaystyle {\frac {b}{c}}={\frac {|AH|}{b}}}.
При перемножении крайних членовпропорций выводятся равенства:
{\displaystyle a^{2}=c\cdot |HB|}; {\displaystyle b^{2}=c\cdot |AH|},
покомпонентное сложение которых даёт требуемый результат:
{\displaystyle a^{2}+b^{2}=c\cdot \left(|HB|+|AH|\right)=c^{2}\,\Leftrightarrow \,a^{2}+b^{2}=c^{2}}.
Автор ответа:
1
Квадрат гипотенузи равен сумме квадратов катетов
Похожие вопросы
Предмет: Химия,
автор: leonidbusila2016
Предмет: Математика,
автор: aminaedilkyzy966
Предмет: Математика,
автор: artemgoncharenko
Предмет: Математика,
автор: nastyakudelya
Предмет: Математика,
автор: Asifjiracat2000