Предмет: Математика,
автор: wwwvikyli
Боковое ребро правильной треугольной пирамиды образует угол 45° с плоскостью основания. Найдите высоту пирамиды, если сторона основания равна 6√3
Ответы
Автор ответа:
4
Пусть SABC- пирамида, SO-высота пирамиды (падает в точку пересечения высот основания-Δ АВС), а АН- высота основания. По теореме Пифагора АН=√ АС^2-СН^2. CH=1/2AC=3√3. Тогда АН=√36*3-9*3=√27*3=9 см
АО=2/3АН=9*2/3=6 см. Δ АSO-прямоугольный(SO-высота) и равнобедренный(∡SAH=45-по условию). Отсюда SO=АН=6 см.
АО=2/3АН=9*2/3=6 см. Δ АSO-прямоугольный(SO-высота) и равнобедренный(∡SAH=45-по условию). Отсюда SO=АН=6 см.
Похожие вопросы
Предмет: Математика,
автор: anya768148
Предмет: Математика,
автор: chinaranadirova627
Предмет: Математика,
автор: xloyanruz
Предмет: История,
автор: PROLinda