Предмет: Математика,
автор: Аноним36556356
Сторона основания правильной четырехугольной пирамиды равна 10. Все двугранные углы при основании пирамиды равны 45°. Найдите площадь боковой поверхности пирамиды. Ответ поделите на √2
Ответы
Автор ответа:
1
Если двугранные углы при основании пирамиды равны 45 градусов, то высота пирамиды равна половине стороны основания, то есть 10/2 = 5, а апофема равна 5√2 (по Пифагору).
Периметр основания Р = 4а = 1*10 = 40.
Отсюда получаем ответ: Sбок = (1/2)РА = (1/2)*40*5√2 = 100√2 кв.ед.
Если ответ поделить на √2, то получим 100.
Периметр основания Р = 4а = 1*10 = 40.
Отсюда получаем ответ: Sбок = (1/2)РА = (1/2)*40*5√2 = 100√2 кв.ед.
Если ответ поделить на √2, то получим 100.
Похожие вопросы
Предмет: Математика,
автор: Аноним
Предмет: Геометрия,
автор: instapapka
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: Joohi
Предмет: География,
автор: safiklyzhko