Предмет: Алгебра, автор: Аноним

При каком значении с произведение корней уравнения
2х²- 8х+с =0 принимает наибольшее значение ? Срочно надо пжж


Аноним: производные проходили?
Аноним: Так параметр задан)

Ответы

Автор ответа: Аноним
22
Согласно теореме Виета x_1+x_2=4 выразив x_1=4-x_2 имеем что

x_1x_2=(4-x_2)x_2= \frac{c}{2} \\ \\ -x^2+4x_2- \frac{c}{2} =0

Рассмотрим функцию f(x_2)=-x^2+4x_2- \frac{c}{2} . Графиком квадратичной функции является парабола, ветви которого направлены вниз, а поскольку ветви направлены вниз, то его вершина параболы достигает наибольшего значения функции

x_2=- \dfrac{b}{2a} = -\dfrac{4}{2\cdot(-1)} =2 - абсцисса вершины 

Тогда x_1=4-x_2=4-2=2. Зная корни уравнения, подставим в произведение корней и найдем параметр с

2\cdot 2= \frac{c}{2} ~~~~\Rightarrow~~~ \boxed{c=8}
Похожие вопросы
Предмет: Математика, автор: домашнеезадание171