Предмет: Геометрия,
автор: dat310nn
Найдите объем правильной треугольной пирамиды сторона основания равна "а",а боковая грань образует с плоскостью основания угол "d"(альфа).
Ответы
Автор ответа:
1
V=(S(осн)*h)/3
S(осн)=(a^2(√3))/4
Вершина пирамиды проецируется в центр треугольника, который лежит на пересечении медиан. Медианы в свою очередь делятся в отношении 2 к 1, считая от вершины. AH-медиана, высота, опущенная на BC. Образуется прямоугольный треугольник с катетом 0,5*a и гипотенузой a
AH=√((a^2-(0,5a)^2)=(a√3)/2
Поделим результат на 3, чтобы получить катет прямоугольного треугольника SOH, где S - вершина пирамиды, а O - центр треугольника
OH=(a√3)/6
В этом треугольнике мы знаем катет, угол альфа, прямой угол. Пусть альфа=α По теореме синусов
h/sin(α)=OH/(sin(90)-α);
h=OH*tg(α)
V=S(осн)*h=((a^2√3)/4)*((a√3)/(6)*tg(α)/3 = (a^3*tg(α))/24
S(осн)=(a^2(√3))/4
Вершина пирамиды проецируется в центр треугольника, который лежит на пересечении медиан. Медианы в свою очередь делятся в отношении 2 к 1, считая от вершины. AH-медиана, высота, опущенная на BC. Образуется прямоугольный треугольник с катетом 0,5*a и гипотенузой a
AH=√((a^2-(0,5a)^2)=(a√3)/2
Поделим результат на 3, чтобы получить катет прямоугольного треугольника SOH, где S - вершина пирамиды, а O - центр треугольника
OH=(a√3)/6
В этом треугольнике мы знаем катет, угол альфа, прямой угол. Пусть альфа=α По теореме синусов
h/sin(α)=OH/(sin(90)-α);
h=OH*tg(α)
V=S(осн)*h=((a^2√3)/4)*((a√3)/(6)*tg(α)/3 = (a^3*tg(α))/24
Похожие вопросы
Предмет: Математика,
автор: 89052912687
Предмет: Информатика,
автор: lukianovmatvey0704
Предмет: Математика,
автор: stanislava347
Предмет: Алгебра,
автор: Аноним
Предмет: Математика,
автор: imustafina1