Предмет: Геометрия, автор: Vitos10

Периметр четырехугольника, описанного около окружности, равен 24, две его стороны равны 5 и 6. Найдите большую из оставшихся сторон

Ответы

Автор ответа: volodyk
0
Четырехугольник можно описать около окружности когда сумма противоположных сторон равны
Четырехугольник АВСД, АВ+СД=ВС+АД, те. сумма двух противоположных сторон = периметр/2=24/2=12, сумма приведенных сторон=5+6=11, значит стороны не противоположные, пусть АВ=5, а ВС=6, тогда СД=12-5=7, АД=12-6=6
большая сторона=7
Похожие вопросы