Предмет: Геометрия,
автор: Dansuzd
Прямая A B касается окружности с центром в точке O радиуса r в точке B . Найдите O A если известно, что A B = √ 69 , r = 10 .
Ответы
Автор ответа:
1
Касательная перпендикулярна радиусу, проведенному в точку касания, значит АВ перпендикулярна ОВ (ОВ-радиус).
Получаем прямоугольный треугольник ОАВ с прямым углом В. Необходимо найти ОА, а это гипотенуза в прямоугольном треугольнике.
Находим по теореме Пифагора:
ОА²=АВ²+ОВ²=(√69)²+10²=69+100=169
ОА=√169=13.
Ответ: 13
Получаем прямоугольный треугольник ОАВ с прямым углом В. Необходимо найти ОА, а это гипотенуза в прямоугольном треугольнике.
Находим по теореме Пифагора:
ОА²=АВ²+ОВ²=(√69)²+10²=69+100=169
ОА=√169=13.
Ответ: 13
Похожие вопросы
Предмет: Математика,
автор: Winnilik
Предмет: Русский язык,
автор: Аноним
Предмет: Английский язык,
автор: mudarovruslan784
Предмет: Геометрия,
автор: vfrol
Предмет: Алгебра,
автор: dasha384