Предмет: Алгебра,
автор: андрей100500ый
Решить уравнение sinx-cos2x=0 . Сколько корней принадлежит отрезку [-2π; 0]
Ответы
Автор ответа:
1
Решение:
8sin²2x+cos2x+1=0
8(1-cos²2x)+cos2x+1=0
-8cos²2x+cos2x+9=0
cos2x=y=>-8y²+y+9=0;y1=-1;y2=9/8
1)cos2x=-1
2x=pi+2pin
x=pi/2+pin,n€Z
2)cos2x=9/8-корней нет
8sin²2x+cos2x+1=0
8(1-cos²2x)+cos2x+1=0
-8cos²2x+cos2x+9=0
cos2x=y=>-8y²+y+9=0;y1=-1;y2=9/8
1)cos2x=-1
2x=pi+2pin
x=pi/2+pin,n€Z
2)cos2x=9/8-корней нет
Похожие вопросы
Предмет: Информатика,
автор: putinimyys
Предмет: Русский язык,
автор: 2011dema
Предмет: Английский язык,
автор: meledinamatrona
Предмет: Математика,
автор: lelik0993
Предмет: Химия,
автор: 101018