Предмет: Геометрия,
автор: Grek228
В равнобедренном треугольнике ABC, в котором AC=BC и угол ACB=62 градуса, найдите градусную меру острого угла, который образован прямыми, содержащими биссектрису угла CAB и медиану, проведенную к стороне AB
Нужно решение и желательно чертёж)))
Ответы
Автор ответа:
3
Найдем углы А и В (они равны, треугольник равнобедренный)
(180-62)/2=59 градусов
Угол А делится пополам по условию (биссектриса угла А).
Значит 59/2=29,5 градусов.
Угол В делится пополам 62/2=31 градус. (В равнобедренном треугольнике медиана проведенная к основанию является одновременно биссектрисой и высотой).
Найдем угол АОС
180-(29,5+31)=119,5 градусов.
(180-62)/2=59 градусов
Угол А делится пополам по условию (биссектриса угла А).
Значит 59/2=29,5 градусов.
Угол В делится пополам 62/2=31 градус. (В равнобедренном треугольнике медиана проведенная к основанию является одновременно биссектрисой и высотой).
Найдем угол АОС
180-(29,5+31)=119,5 градусов.
Похожие вопросы
Предмет: Английский язык,
автор: dfoxy658
Предмет: Биология,
автор: Аноним
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: sofia104
Предмет: История,
автор: MAMKALOVE