Предмет: Геометрия,
автор: CruelJest
В трапецию ABCD вписана окружность, которая касается боковой стороны AB в точке K. Известно, что AK =8 , KB= 3. Найдите радиус окружности.
Ответы
Автор ответа:
5
В трапецию ABCD вписана окружность, которая касается боковой стороны AB в точке K. Известно, что AK =8 , KB= 3. Найдите радиус окружности.
Решение возможно в двух вариантах:
1) r = √(8*3) = √24 = 2√6 ед (на основании свойства высоты из прямого угла).
2) Примем О - центр вписанной окружности,
х - отрезок ВО.
у - отрезок АО.
Составляем систему из трёх уравнений:
{9 + r² = x²;
{64 + r² = y²;
{x² + y² = (8+3)².
Подставим в третье уравнение x² + y² = 9 + r² + 64 + r² = 2r² + 73.
Получим 2r² + 73 = 121,
r² = (121 - 73)/2 = 48/2 = 24.
Тогда r = √24 = 2√6 ед.
Решение возможно в двух вариантах:
1) r = √(8*3) = √24 = 2√6 ед (на основании свойства высоты из прямого угла).
2) Примем О - центр вписанной окружности,
х - отрезок ВО.
у - отрезок АО.
Составляем систему из трёх уравнений:
{9 + r² = x²;
{64 + r² = y²;
{x² + y² = (8+3)².
Подставим в третье уравнение x² + y² = 9 + r² + 64 + r² = 2r² + 73.
Получим 2r² + 73 = 121,
r² = (121 - 73)/2 = 48/2 = 24.
Тогда r = √24 = 2√6 ед.
Похожие вопросы
Предмет: История,
автор: dianaaliyeva21
Предмет: Алгебра,
автор: veedroGnamoR
Предмет: Обществознание,
автор: Spitsinalera2006
Предмет: Математика,
автор: SssShon