Предмет: Алгебра,
автор: DogyDogy
Найти наибольшее и наименьшее значение функции y=2sin+sin2x. Область значения [0;П/2]
Ответы
Автор ответа:
1
Найдем критические точки y'=0
y'=2cos(x)+2cos(2x)=0
2cos(x)+2cos(2x)=4*cos(x+2x/2)*cos(x-2x/2)=4*cos(3x/2)*cos(-x/2)=
4*cos(3x/2)*cos(x/2)=0
cos(3x/2)=0 или cos(x/2)=0
3x/2=П/2 x/2=П/2
x=П/3 x=П⊄[0;П/2]
y(0)=0
y(П/2)=2*1+0=2
y(П/3)=2*√3/2+√3/2=3√3/2
Наибольшое y(П/3)=3√3/2
Наименшее y(0)=0
y'=2cos(x)+2cos(2x)=0
2cos(x)+2cos(2x)=4*cos(x+2x/2)*cos(x-2x/2)=4*cos(3x/2)*cos(-x/2)=
4*cos(3x/2)*cos(x/2)=0
cos(3x/2)=0 или cos(x/2)=0
3x/2=П/2 x/2=П/2
x=П/3 x=П⊄[0;П/2]
y(0)=0
y(П/2)=2*1+0=2
y(П/3)=2*√3/2+√3/2=3√3/2
Наибольшое y(П/3)=3√3/2
Наименшее y(0)=0
Похожие вопросы
Предмет: Математика,
автор: aidabajzigitova654
Предмет: Русский язык,
автор: Nata9922
Предмет: Математика,
автор: lutcenkor
Предмет: Физика,
автор: Maxizaytsev
Предмет: Алгебра,
автор: sofika694