Предмет: Алгебра,
автор: KidokPomidor
При яких значеннях параметра a корені рівняння x²-(2a+1)x+4-a=0 розміщенні між числами 1 і 3?
Ответы
Автор ответа:
2
Для того, что бы оба корня квадратного уравнения
находились между
и
, необходимо и достаточно, что бы выполнялись условия:
Случай 1:

Случай 2:

---------------------------------
![x^2-(2a+1)x+4-a=0\ \ \ \ M=1\ \ \ \ N=3\\\\
\begin{equation*}
\begin{cases}
1\ \textgreater \ 0\\
D=[-(2a+1)]^2-4*1*(4-a) \geq 0\\
1 \ \textless \ -\frac{-(2a+1)}{2*1} \ \textless \ 3\\
f(1)=1-(2a+1)*1+4-a\ \textgreater \ 0\\
f(3)=3^2-(2a+1)*3+4-a\ \textgreater \ 0
\end{cases}
\end{equation*}\\\\ x^2-(2a+1)x+4-a=0\ \ \ \ M=1\ \ \ \ N=3\\\\
\begin{equation*}
\begin{cases}
1\ \textgreater \ 0\\
D=[-(2a+1)]^2-4*1*(4-a) \geq 0\\
1 \ \textless \ -\frac{-(2a+1)}{2*1} \ \textless \ 3\\
f(1)=1-(2a+1)*1+4-a\ \textgreater \ 0\\
f(3)=3^2-(2a+1)*3+4-a\ \textgreater \ 0
\end{cases}
\end{equation*}\\\\](https://tex.z-dn.net/?f=x%5E2-%282a%2B1%29x%2B4-a%3D0%5C+%5C+%5C+%5C+M%3D1%5C+%5C+%5C+%5C+N%3D3%5C%5C%5C%5C%0A%5Cbegin%7Bequation%2A%7D%0A%09%5Cbegin%7Bcases%7D%0A%09%091%5C+%5Ctextgreater+%5C+0%5C%5C%0A%09%09D%3D%5B-%282a%2B1%29%5D%5E2-4%2A1%2A%284-a%29+%5Cgeq+0%5C%5C%0A++++++++++++++++1+%5C+%5Ctextless+%5C++-%5Cfrac%7B-%282a%2B1%29%7D%7B2%2A1%7D+%5C+%5Ctextless+%5C++3%5C%5C%0A++++++++++++++++f%281%29%3D1-%282a%2B1%29%2A1%2B4-a%5C+%5Ctextgreater+%5C+0%5C%5C%0A++++++++++++++++f%283%29%3D3%5E2-%282a%2B1%29%2A3%2B4-a%5C+%5Ctextgreater+%5C+0%0A%09%5Cend%7Bcases%7D%0A%5Cend%7Bequation%2A%7D%5C%5C%5C%5C)

![\begin{equation*}
\begin{cases}
4a^2+8a-15 \geq 0\ \ \ D=8^2+4*4*15=19*4^2\\
\frac{1}{2} \ \textless \ a \ \textless \ \frac{5}{2}\\
a\ \textless \ \frac{4}{3}\\
a\ \textless \ \frac{10}{7}
\end{cases}
\end{equation*} \\\\
\begin{equation*}
\begin{cases}
[a-\frac{-8-4\sqrt{19}}{4*2}]*[a-\frac{-8+4\sqrt{19}}{4*2}] \geq 0\\
a \ \textgreater \ \frac{1}{2}\\
a\ \textless \ \frac{4}{3}\\
\end{cases}
\end{equation*}\\\\ \begin{equation*}
\begin{cases}
4a^2+8a-15 \geq 0\ \ \ D=8^2+4*4*15=19*4^2\\
\frac{1}{2} \ \textless \ a \ \textless \ \frac{5}{2}\\
a\ \textless \ \frac{4}{3}\\
a\ \textless \ \frac{10}{7}
\end{cases}
\end{equation*} \\\\
\begin{equation*}
\begin{cases}
[a-\frac{-8-4\sqrt{19}}{4*2}]*[a-\frac{-8+4\sqrt{19}}{4*2}] \geq 0\\
a \ \textgreater \ \frac{1}{2}\\
a\ \textless \ \frac{4}{3}\\
\end{cases}
\end{equation*}\\\\](https://tex.z-dn.net/?f=%5Cbegin%7Bequation%2A%7D%0A%09%5Cbegin%7Bcases%7D%0A%09%094a%5E2%2B8a-15+%5Cgeq+0%5C+%5C+%5C+D%3D8%5E2%2B4%2A4%2A15%3D19%2A4%5E2%5C%5C%0A++++++++++++++++%5Cfrac%7B1%7D%7B2%7D+%5C+%5Ctextless+%5C++a+%5C+%5Ctextless+%5C++%5Cfrac%7B5%7D%7B2%7D%5C%5C%0A++++++++++++++++a%5C+%5Ctextless+%5C+%5Cfrac%7B4%7D%7B3%7D%5C%5C%0A++++++++++++++++a%5C+%5Ctextless+%5C+%5Cfrac%7B10%7D%7B7%7D%0A%09%5Cend%7Bcases%7D%0A%5Cend%7Bequation%2A%7D%09%5C%5C%5C%5C%0A%5Cbegin%7Bequation%2A%7D%0A%09%5Cbegin%7Bcases%7D%0A%09%09%5Ba-%5Cfrac%7B-8-4%5Csqrt%7B19%7D%7D%7B4%2A2%7D%5D%2A%5Ba-%5Cfrac%7B-8%2B4%5Csqrt%7B19%7D%7D%7B4%2A2%7D%5D+%5Cgeq+0%5C%5C%0A++++++++++++++++a+%5C+%5Ctextgreater+%5C++%5Cfrac%7B1%7D%7B2%7D%5C%5C%0A++++++++++++++++a%5C+%5Ctextless+%5C+%5Cfrac%7B4%7D%7B3%7D%5C%5C%0A%09%5Cend%7Bcases%7D%0A%5Cend%7Bequation%2A%7D%5C%5C%5C%5C)
![\begin{equation*}
\begin{cases}
[a-\frac{-2-\sqrt{19}}{2}]*[a-\frac{-2+\sqrt{19}}{2}] \geq 0\\
\frac{1}{2}\ \textless \ a\ \textless \ \frac{4}{3}
\end{cases}
\end{equation*}\\\\
\begin{equation*}
\begin{cases}
a\in(-\infty;\ \frac{-2-\sqrt{19}}{2}]\cup[\frac{-2+\sqrt{19}}{2};\ +\infty)\\
a\in(\frac{1}{2};\ \frac{4}{3})
\end{cases}
\end{equation*}\\\\ \begin{equation*}
\begin{cases}
[a-\frac{-2-\sqrt{19}}{2}]*[a-\frac{-2+\sqrt{19}}{2}] \geq 0\\
\frac{1}{2}\ \textless \ a\ \textless \ \frac{4}{3}
\end{cases}
\end{equation*}\\\\
\begin{equation*}
\begin{cases}
a\in(-\infty;\ \frac{-2-\sqrt{19}}{2}]\cup[\frac{-2+\sqrt{19}}{2};\ +\infty)\\
a\in(\frac{1}{2};\ \frac{4}{3})
\end{cases}
\end{equation*}\\\\](https://tex.z-dn.net/?f=%5Cbegin%7Bequation%2A%7D%0A%09%5Cbegin%7Bcases%7D%0A%09%09%5Ba-%5Cfrac%7B-2-%5Csqrt%7B19%7D%7D%7B2%7D%5D%2A%5Ba-%5Cfrac%7B-2%2B%5Csqrt%7B19%7D%7D%7B2%7D%5D+%5Cgeq+0%5C%5C%0A++++++++++++++++%5Cfrac%7B1%7D%7B2%7D%5C+%5Ctextless+%5C+a%5C+%5Ctextless+%5C+%5Cfrac%7B4%7D%7B3%7D%0A%09%5Cend%7Bcases%7D%0A%5Cend%7Bequation%2A%7D%5C%5C%5C%5C%0A%5Cbegin%7Bequation%2A%7D%0A%09%5Cbegin%7Bcases%7D%0A++++++++++++++++a%5Cin%28-%5Cinfty%3B%5C+%5Cfrac%7B-2-%5Csqrt%7B19%7D%7D%7B2%7D%5D%5Ccup%5B%5Cfrac%7B-2%2B%5Csqrt%7B19%7D%7D%7B2%7D%3B%5C+%2B%5Cinfty%29%5C%5C%0A++++++++++++++++a%5Cin%28%5Cfrac%7B1%7D%7B2%7D%3B%5C+%5Cfrac%7B4%7D%7B3%7D%29%0A%09%5Cend%7Bcases%7D%0A%5Cend%7Bequation%2A%7D%5C%5C%5C%5C)


--------------------------------------

Случай 1:
Случай 2:
---------------------------------
--------------------------------------
Похожие вопросы
Предмет: Русский язык,
автор: amiblood
Предмет: История,
автор: amirzunumagametov2
Предмет: Английский язык,
автор: sveta040408
Предмет: Математика,
автор: ВероникаМедвежонок
Предмет: Математика,
автор: игорь382