Предмет: Алгебра, автор: Kassandra46

Докажите тождество:
tg(α+β) - (tgα + tgβ) = tg(α+β)tgα*tgβ

Ответы

Автор ответа: nKrynka
1
 Решение
Докажите тождество: 
tg(α+β) - (tgα + tgβ) = tg(α+β)tgα*tgβ
tg(α+β) - (tgα + tgβ) = (tgα + tgβ)/(1 - tgαtgβ) - (tgα + tgβ) =
= [ (tgα + tgβ) - (1 - tgαtgβ) *(tgα + tgβ)] / (1 - tgαtgβ) =
= (tgα + tgβ - tgα - tgβ + tg²αtgβ + tgαtg²β) / (1 - tgαtgβ) =
= [tg
αtgβ(tgα + tgβ)] / (1 - tgαtgβ) = tgα * tgβ * tg(α+β)
tgα * tgβ * tg(α+β) = tgα * tgβ * tg(α+β)
доказано
Похожие вопросы
Предмет: Математика, автор: БородинаАлена