Предмет: Математика,
автор: Skameika222
Как найти непересекающиеся рёбра куба?
Ответы
Автор ответа:
1
Существует несколько вариантов определения ребра куба.
1 В том случае, если известна площадь куба, то можно легко определить ребро. Грань куба представляет собой квадрат со
стороной, равной ребру куба. Соответственно, её площадь равняется квадрату ребра куба. Следует воспользоваться формулой: а=√S, где а – это длина ребра куба, а S – это площадь грани куба.
2. Найти ребро куба по его объему – еще более простая задача. Нужно учитывать, что объем куба равен кубу (в третьей степени) длины ребра куба. Получается, что длина ребра равняется кубическому корню из его объема. То есть, мы получаем следующую формулу: а=√V, где а – это длина ребра куба, а V – объем куба.
3. По диагоналям также можно найти ребро куба. Соответственно, нам необходимы: а – длина ребра куба, b – длина диагонали грани куба, c – длина диагонали куба. По теореме Пифагора получаем: a^2+a^2=b^2, и отсюда можно легко вывести следующую формулу: a=√(b^2/2), по которой извлекается ребро куба.
1 В том случае, если известна площадь куба, то можно легко определить ребро. Грань куба представляет собой квадрат со
стороной, равной ребру куба. Соответственно, её площадь равняется квадрату ребра куба. Следует воспользоваться формулой: а=√S, где а – это длина ребра куба, а S – это площадь грани куба.
2. Найти ребро куба по его объему – еще более простая задача. Нужно учитывать, что объем куба равен кубу (в третьей степени) длины ребра куба. Получается, что длина ребра равняется кубическому корню из его объема. То есть, мы получаем следующую формулу: а=√V, где а – это длина ребра куба, а V – объем куба.
3. По диагоналям также можно найти ребро куба. Соответственно, нам необходимы: а – длина ребра куба, b – длина диагонали грани куба, c – длина диагонали куба. По теореме Пифагора получаем: a^2+a^2=b^2, и отсюда можно легко вывести следующую формулу: a=√(b^2/2), по которой извлекается ребро куба.
Похожие вопросы
Предмет: Геометрия,
автор: evarihtik50246pebnbe
Предмет: Геометрия,
автор: maksimshalifullin
Предмет: Українська мова,
автор: alexmuhin150529
Предмет: Математика,
автор: олялп
Предмет: Математика,
автор: ydaniil