Предмет: Геометрия,
автор: tanjapugachp7nk10
в окружности с центром О проведён диаметр АВ и хорда АС.докажите что угол САВ ровна одной второй угла СОВ
Ответы
Автор ответа:
0
1 способ. ∠САВ-вписанный, опирается на дугу СВ,
по свойству вписанного угла он равен 1/2 ∪СВ.
∠СОВ-центральный, опирается на дугу СВ,
по свойству центрального угла он равен ∪СВ,
значит ∠САВ=1/2∠СОВ.
2 способ.
АО=СО=ОВ-как радиусы одной окружности.
Тогда ∠АОС=180-2∠САВ⇒
∠СОВ=180-∠АОС=180-(180-2∠САВ)=180-180+2∠САВ=2∠САВ⇒
∠САВ=1/2∠СОВ
Прикреплен еще один рисунок.
по свойству вписанного угла он равен 1/2 ∪СВ.
∠СОВ-центральный, опирается на дугу СВ,
по свойству центрального угла он равен ∪СВ,
значит ∠САВ=1/2∠СОВ.
2 способ.
АО=СО=ОВ-как радиусы одной окружности.
Тогда ∠АОС=180-2∠САВ⇒
∠СОВ=180-∠АОС=180-(180-2∠САВ)=180-180+2∠САВ=2∠САВ⇒
∠САВ=1/2∠СОВ
Прикреплен еще один рисунок.
Приложения:
Похожие вопросы
Предмет: Английский язык,
автор: Jokerdjd
Предмет: Оʻzbek tili,
автор: tojiboyevagulshoda48
Предмет: Литература,
автор: ChayoksromaShkoy
Предмет: Математика,
автор: ралалп