Предмет: Алгебра, автор: echukalov2001r

Найдите значение производной функции в точке х0 :

y(x) = х^2+4√х−4x, х0=4.

Ответы

Автор ответа: xtoto
1
y(x)=x^2+4\sqrt{x}-4x\\\\
y'(x)=[x^2+4\sqrt{x}-4x]'=[x^2]'+[4\sqrt{x}]'-[4x]'=\\\\
=[2x]+4*[\sqrt{x}]'-4*[x]'=2x+4*[\frac{1}{2\sqrt{x}}]-4*[1]=\\\\
=2x+\frac{2}{\sqrt{x}}-4\\\\
y'(x_0)=y'(4)=2*4+\frac{2}{\sqrt{4}}-4=8+\frac{2}{2}-4=8+1-4=5

echukalov2001r: Можете пожалуйста написать и скинуть решение на фото, а то по записи я не понял что к чему...
xtoto: не могу, приглашаю задавать вопросы
Похожие вопросы
Предмет: Математика, автор: abobahshe
Предмет: Английский язык, автор: Hamachik