Предмет: Геометрия,
автор: Severus
BC и AD основания трапеции. О - точка пересечения её диагоналей. Площади треугольников BOC и AOD равны 4 и 9 соответственно. Найдите площадь трапеции.
Ответы
Автор ответа:
0
Нарисуй эту самую трапецию ABCD и проведи диагонали. Диагонали
пересекаются в точке О. Теперь проведём высоту EF из основания BC к
основанию AD так, чтобы она проходила через точку О.
S(ABCD)=1/2*(AD+BC)*EF
Рассмотрим треугольники BOC и AOD. Они подобны, так как три угла их равны (AOD и BOC вертикальные, а два других, так как BC и AD параллельны друг другу).
Тогда AD^2/BC^2=S(AOD)/S(BOC) AD/BC=3/2 BC=2/3*AD
Аналогично EO=2/3*OF
OF=3/2EO
S(AOD)=1/2*AD*OF=9
S(BOC)=1/2*BC*EO=4
S(ABCD)=1/2(AD+BC)*EF=1/2(AD*EF+BC*EF)=1/2(AD*EO+AD*OF+BC*EO+BC*OF)=1/2(8+AD*EO+BC*OF+18)=1/2(26+AD*2/3OF+BC*3/2EO)=1/2(26+2/3*18+3/2*8)=1/2*(26+12+12)=48/2=24
S(ABCD)=1/2*(AD+BC)*EF
Рассмотрим треугольники BOC и AOD. Они подобны, так как три угла их равны (AOD и BOC вертикальные, а два других, так как BC и AD параллельны друг другу).
Тогда AD^2/BC^2=S(AOD)/S(BOC) AD/BC=3/2 BC=2/3*AD
Аналогично EO=2/3*OF
OF=3/2EO
S(AOD)=1/2*AD*OF=9
S(BOC)=1/2*BC*EO=4
S(ABCD)=1/2(AD+BC)*EF=1/2(AD*EF+BC*EF)=1/2(AD*EO+AD*OF+BC*EO+BC*OF)=1/2(8+AD*EO+BC*OF+18)=1/2(26+AD*2/3OF+BC*3/2EO)=1/2(26+2/3*18+3/2*8)=1/2*(26+12+12)=48/2=24
Автор ответа:
0
не правильно посчитал (26+12+12)=50, а не 48 => ответ 25
Автор ответа:
0
мое решение попроще)
Похожие вопросы
Предмет: Русский язык,
автор: stetsenko1
Предмет: История,
автор: lizaterty
Предмет: Биология,
автор: gembusvlada
Предмет: Математика,
автор: Espada