Предмет: Геометрия, автор: R0bo7

В правильной четырёхугольной пирамиде SABCD (с вершиной S) сторона основания равна
√6, а боковое ребро равно 2. Точка M— середина ребра SC. Найдите угол между прямыми
AS и BM.

помогите, пожалуйста!


R0bo7: Хотел загрузить фотографию, но сюда, видимо, нельзя. В общем, там всего лишь паралельно перенести АS к МО и найти тангенс угла ВМО
R0bo7: 60 градусов. Рано говорить о поступлении без результатов ЕГЭ)
R0bo7: Да, считал. а задача, выходит, усная)
R0bo7: Я разбираю сейчас геометрию, начал с простого. У меня просто она в ноль уходит
R0bo7: а время вроде есть - два месяца

Ответы

Автор ответа: dnepr1
6
SO - высота пирамиды, она равна √(AS² - AO²) = √(2² - (√6*√2/2)² =
 = √(4 - (12/4)) = √1 = 1.
Отрезок ВМ = √((3√6/4)² + (√6/4)² + (1/2)²) = 2.
Применим параллельный перенос отрезка ВМ точкой В в точку А.
Получим отрезок АМ1.
Соединим точку М1 с вершиной S, отрезок SМ1 имеет точно такие же разности координат, как и отрезок ВМ, поэтому тоже равен 2.
То есть, получен равносторонний треугольник, углы в нём по 60 градусов, в том числе и искомый между AS и ВМ.

Ответ: угол между прямыми AS и ВМ равен 60 градусов.

Похожие вопросы
Предмет: Алгебра, автор: яфизиклол