Предмет: Алгебра,
автор: Tutundalgatova
Очень срочно надо, начиная со 2 примера (упражнение 35.13)
!!!!!!! Плиииииз!!!!!
Приложения:
Ответы
Автор ответа:
2
уравнение кассательной:
![(2)\\
f(x)=\sqrt[3]{x}=x^{\frac{1}{3}},\ \ \ x_0=27\\\\
f'(x)=[x^{\frac{1}{3}}]'=\frac{1}{3}*x^{\frac{1}{3}-1}=\frac{1}{3}*x^{-\frac{2}{3}}=\frac{1}{3*\sqrt[3]{x^2}}\\\\
k=f'(x_0)=f'(27)=\frac{1}{3*\sqrt[3]{27^2}}=\frac{1}{3*\sqrt[3]{3^6}}=\frac{1}{3*3^2}=\frac{1}{3^3}=\frac{1}{27} (2)\\
f(x)=\sqrt[3]{x}=x^{\frac{1}{3}},\ \ \ x_0=27\\\\
f'(x)=[x^{\frac{1}{3}}]'=\frac{1}{3}*x^{\frac{1}{3}-1}=\frac{1}{3}*x^{-\frac{2}{3}}=\frac{1}{3*\sqrt[3]{x^2}}\\\\
k=f'(x_0)=f'(27)=\frac{1}{3*\sqrt[3]{27^2}}=\frac{1}{3*\sqrt[3]{3^6}}=\frac{1}{3*3^2}=\frac{1}{3^3}=\frac{1}{27}](https://tex.z-dn.net/?f=%282%29%5C%5C%0Af%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%2C%5C+%5C+%5C+x_0%3D27%5C%5C%5C%5C%0Af%27%28x%29%3D%5Bx%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5D%27%3D%5Cfrac%7B1%7D%7B3%7D%2Ax%5E%7B%5Cfrac%7B1%7D%7B3%7D-1%7D%3D%5Cfrac%7B1%7D%7B3%7D%2Ax%5E%7B-%5Cfrac%7B2%7D%7B3%7D%7D%3D%5Cfrac%7B1%7D%7B3%2A%5Csqrt%5B3%5D%7Bx%5E2%7D%7D%5C%5C%5C%5C%0Ak%3Df%27%28x_0%29%3Df%27%2827%29%3D%5Cfrac%7B1%7D%7B3%2A%5Csqrt%5B3%5D%7B27%5E2%7D%7D%3D%5Cfrac%7B1%7D%7B3%2A%5Csqrt%5B3%5D%7B3%5E6%7D%7D%3D%5Cfrac%7B1%7D%7B3%2A3%5E2%7D%3D%5Cfrac%7B1%7D%7B3%5E3%7D%3D%5Cfrac%7B1%7D%7B27%7D)
![(3)\\ f(x)=\frac{1}{x^3}=x^{-3},\ \ \ x_0=-3\\\\
f'(x)=[x^{-3}]'=-3*x^{-3-1}=-3*x^{-4}=-3*\frac{1}{x^4}=-\frac{3}{x^4}\\\\
k=f'(x_0)=f'(-3)=-\frac{3}{(-3)^4}=-\frac{1}{3^3}=-\frac{1}{27} (3)\\ f(x)=\frac{1}{x^3}=x^{-3},\ \ \ x_0=-3\\\\
f'(x)=[x^{-3}]'=-3*x^{-3-1}=-3*x^{-4}=-3*\frac{1}{x^4}=-\frac{3}{x^4}\\\\
k=f'(x_0)=f'(-3)=-\frac{3}{(-3)^4}=-\frac{1}{3^3}=-\frac{1}{27}](https://tex.z-dn.net/?f=%283%29%5C%5C+f%28x%29%3D%5Cfrac%7B1%7D%7Bx%5E3%7D%3Dx%5E%7B-3%7D%2C%5C+%5C+%5C+x_0%3D-3%5C%5C%5C%5C%0Af%27%28x%29%3D%5Bx%5E%7B-3%7D%5D%27%3D-3%2Ax%5E%7B-3-1%7D%3D-3%2Ax%5E%7B-4%7D%3D-3%2A%5Cfrac%7B1%7D%7Bx%5E4%7D%3D-%5Cfrac%7B3%7D%7Bx%5E4%7D%5C%5C%5C%5C%0Ak%3Df%27%28x_0%29%3Df%27%28-3%29%3D-%5Cfrac%7B3%7D%7B%28-3%29%5E4%7D%3D-%5Cfrac%7B1%7D%7B3%5E3%7D%3D-%5Cfrac%7B1%7D%7B27%7D)
![(4)\\
f(x)=cos(x), \ \ \ x_0=-\frac{\pi}{2}\\\\
f'(x)=[cos(x)]'=-sin(x)\\\\
k=f'(x_0)=f'(-\frac{\pi}{2})=-sin(-\frac{\pi}{2})=sin(\frac{\pi}{2})=1 (4)\\
f(x)=cos(x), \ \ \ x_0=-\frac{\pi}{2}\\\\
f'(x)=[cos(x)]'=-sin(x)\\\\
k=f'(x_0)=f'(-\frac{\pi}{2})=-sin(-\frac{\pi}{2})=sin(\frac{\pi}{2})=1](https://tex.z-dn.net/?f=%284%29%5C%5C%0Af%28x%29%3Dcos%28x%29%2C+%5C+%5C+%5C+x_0%3D-%5Cfrac%7B%5Cpi%7D%7B2%7D%5C%5C%5C%5C%0Af%27%28x%29%3D%5Bcos%28x%29%5D%27%3D-sin%28x%29%5C%5C%5C%5C%0Ak%3Df%27%28x_0%29%3Df%27%28-%5Cfrac%7B%5Cpi%7D%7B2%7D%29%3D-sin%28-%5Cfrac%7B%5Cpi%7D%7B2%7D%29%3Dsin%28%5Cfrac%7B%5Cpi%7D%7B2%7D%29%3D1)
Похожие вопросы
Предмет: Математика,
автор: tanyabulmaga7892
Предмет: Қазақ тiлi,
автор: LeraLis513
Предмет: Математика,
автор: gorbunovaviktoria198
Предмет: Математика,
автор: Аноним
Предмет: Литература,
автор: MonsterShot