Предмет: Алгебра,
автор: Uzapax
x-1\x+5 ≥ 2 Метод интервалов
^
тут дробь
Ответы
Автор ответа:
0
(х-1)/(х+5)≥2
(х-1)/(х+5)-2≥0
(х-1-2х-10)/(х+5)≥0
-(х+11)/(х+5)≥0
(х+11)/(х+5)≤0
по методу интервалов
____+_____-11_____-_____-5_____+__
х€[-11;-5)
(х-1)/(х+5)-2≥0
(х-1-2х-10)/(х+5)≥0
-(х+11)/(х+5)≥0
(х+11)/(х+5)≤0
по методу интервалов
____+_____-11_____-_____-5_____+__
х€[-11;-5)
Автор ответа:
0
Решение
(x - 1) \ (x + 5) ≥ 2
(x - 1)/(x + 5) - 2 ≥ 0
(x - 1 - 2x - 10) / (x + 5) ≥ 0
(- x - 11) / (x + 5) ≥ 0
(x + 11) / (x + 5) ≤ 0
x + 11 = 0
x = - 11
x + 5 = 0
x = - 5
+ - +
------------------------------------------->
-∞ - 11 - 5 -∞ x
x ∈ [- 11 ; - 5]
(x - 1) \ (x + 5) ≥ 2
(x - 1)/(x + 5) - 2 ≥ 0
(x - 1 - 2x - 10) / (x + 5) ≥ 0
(- x - 11) / (x + 5) ≥ 0
(x + 11) / (x + 5) ≤ 0
x + 11 = 0
x = - 11
x + 5 = 0
x = - 5
+ - +
------------------------------------------->
-∞ - 11 - 5 -∞ x
x ∈ [- 11 ; - 5]
Похожие вопросы
Предмет: Физика,
автор: Zherfik
Предмет: Қазақ тiлi,
автор: lBANANAl
Предмет: Українська література,
автор: Nastya446688
Предмет: Алгебра,
автор: Owen333333333333