Предмет: Алгебра, автор: Димон23333

Дана последовательность чисел 2 4 8 найти а24

Ответы

Автор ответа: dtnth
1
последовательность вообще можно по-разному продолжать

например 2, 4, 8, 2, 4, 8, 2, 4, 8 , ... (циклически повторяем числа)
тогда a_{24}=8 так каждое третье будет 8

либо можно увидеть как геометрическую прогрессию с первым членом 2 и знаменателем 2
тогда a_n=a_1*q^{n-1}
a_n=2*2^{n-1}=2^n
a_{24}=2^{24}

(либо просто как последовательность степеней двойки)
a_1=2^1=2
2_2=2^2=4
a_3=2^4=8
..
a_{24}=2^{24}
либо как a_n=An^2+Bn+C

a+b+c=2
4a+2b+c=4
9a+3b+c=8
3a+b=2
8a+2b=6, 4a+b=3
a=1
b=2-3*1=-1
c=2-a-b=2-1-(-1)=2

a_n=n^2-n+2
a_1=1^2-1+2=2
a_2=2^2-2+2=4
a_3=3^2-3+2=8
a_{24}=24^2-24+2=554 

Приложения:

Димон23333: спасибо
Похожие вопросы
Предмет: Литература, автор: Аноним
Предмет: Математика, автор: ВикторияГречушкина