Сколько четных четырехзначных чисел, все цифры которых различны, можно записать с помощью цифр 2, 3, 4, 7 и 9?
Ответы
Все записанные цифры значащие: 2, 3, 4, 7, 9.
Чтобы число было чётным, оно должно оканчиваться на чётную цифру. То есть на 2 или 4 из предложенных цифр.
Если четырёхзначное число оканчивается цифрой 2, то на первом месте может быть любая из четырёх оставшихся цифр, на втором - любая из трёх оставшихся, а на третьем - любая из двух оставшихся цифр. Всего четырёхзначных чисел с двойкой на конце возможно:
Аналогично, если четырёхзначное число оканчивается цифрой 4, тоже будет 24 числа.
Всего четырёхзначных чисел будет
=====================================
Если решать с помощью формул комбинаторики:
- количество вариантов последней цифры равно количеству размещений двух цифр на одном месте;
- количество вариантов трех первых цифр равно количеству размещений четырёх цифр на трёх местах.
Общее количество вариантов равно произведению:
Ответ: 48 чисел.