Предмет: Математика,
автор: smnva29
Окружность разделена на 4 дуги, длины которых равны 2, 5, 6 и х. Дуга длины 2 соответствует центральному углу в 30 градусов. Найдите величину х.
Ответы
Автор ответа:
9
Если дуга, длиной 2, соответствует центральному углу в 30°, то полному углу в 360° будет соответствовать дуга, длиной:
360 : 30 * 2 = 24
Сумма длин трех известных дуг:
2 + 5 + 6 = 13
Тогда х = 24 - 13 = 11
Ответ: четвертая дуга имеет длину 11.
360 : 30 * 2 = 24
Сумма длин трех известных дуг:
2 + 5 + 6 = 13
Тогда х = 24 - 13 = 11
Ответ: четвертая дуга имеет длину 11.
mballackp6pggi:
мой такой ответ удалили
На каком основании?
ошибки
Сожалеем, но ваш ответ содержит ошибки, поэтому не может считаться верным. Пожалуйста, проверьте его и попробуйте ещё раз.
Круто!!! - Вот ошибок я тут точно не вижу..))
Удаленный ответ не содержал ни ОДНОГО объяснения к решению . Просто арифметические действия
Автор ответа:
9
коль в условии задачи нам дана прямая зависимость длины дуги и величины центрального угла, то следовательно через отношение дуг мы сможем вычислить и величины всех углов. просто составляем пропорции. только обозначим величину угла через
.

и так величины трех из четырех центральных углов нам известны. осталось найти последний. угловая величина окружности равна 360°, поэтому
360-30-75-90=165°
х=165:30*2=5,5*2=11
и так величины трех из четырех центральных углов нам известны. осталось найти последний. угловая величина окружности равна 360°, поэтому
360-30-75-90=165°
х=165:30*2=5,5*2=11
Похожие вопросы
Предмет: Математика,
автор: tariyelhemidov1984
Предмет: Химия,
автор: 412357896
Предмет: Биология,
автор: aimoka39
Предмет: История,
автор: 1111223366