Предмет: Алгебра, автор: sazonovaa695

Решите систему уравнений
1) {(x+y)/(x-y)+x/y=-5/6
{(X^2+xy)/(xy-y^2)=1/6


2) {корень из (x+3y)/(y+5)+2=3 корня из (y+5)/(x+3y)
{xy+2x=13-4y

Ответы

Автор ответа: tamarabernukho
0

 \left \{ {{ \frac{x+y}{x-y} + \frac{x}{y} =- \frac{5}{6} } \atop { \frac{x^2+xy}{xy-y^2} = \frac{1}{6} }} \right.  \\  \\ ODZ:x \neq y;y \neq 0 \\  \\  \left \{ {{ \frac{x+y}{x-y} + \frac{x}{y} =- \frac{5}{6} } \atop { \frac{x(x+y)}{y(x-y)} = \frac{1}{6} }} \right. \\  \\ a= \frac{x+y}{x-y} ;b= \frac{x}{y}  \\  \\  \left \{ {{a+b=- \frac{5}{6} } \atop {ab= \frac{1}{6} }} \right.  \\  \\  \left \{ {{b=-a- \frac{5}{6} } \atop {a(-a- \frac{5}{6}) = \frac{1}{6} }} \right.  \\  \\ 6a^2+5a+1=0 \\  \\
D=1 \\  \\  a_{1} =- \frac{1}{2 }  \\  b_{1} =- \frac{1}{3}  \\  \\   \left \{ {{ \frac{x+y}{x-y} =- \frac{1}{2} } \atop { \frac{x}{y} =-  \frac{1}{3} }} \right.  \\  \\ y=-3x;x \neq 0 \\  \\  a_{2} =- \frac{1}{3 }  \\  b_{2} =- \frac{1}{2}  \\  \\   \left \{ {{ \frac{x+y}{x-y} =- \frac{1}{3} } \atop { \frac{x}{y} =-  \frac{1}{2} }} \right.  \\  \\ y=-2x;x \neq 0 \\  \\ OTVET: \\  \\ y=-3x;x \neq 0 \\  \\  y=-2x;x \neq 0 \\  \\ \\

 \left \{ {{ \sqrt{ \frac{x+3y}{y+5} } +2=3 \sqrt{ \frac{y+5}{x+3y} } } \atop {xy+2x=13-4y}} \right.  \\  \\ y \neq -5;x \neq -3y \\  \\ t= \sqrt{ \frac{x+3y}{y+5} } ;t\ \textgreater \ 0 \\  \\ t+2= \frac{3}{t}  \\  \\ t^2+2t-3=0 \\  \\ D=16 \\  \\  t_{1} =(-2-4)/2=-3\ \textless \ 0; \\  \\  t_{2} =(-2+4)/2=1\ \textgreater \ 0 \\  \\ t=1 \\  \\
 \left \{ {{ \sqrt{ \frac{x+3y}{y+5} } =1} \atop {xy+2x=13-4y}} \right.  \\  \\  \left \{ {{x+3y=y+5} \atop {xy+2x=13-4y}} \right.  \\  \\  \left \{ {{x=-2y+5} \atop {-4y+10-2y^2+5y=13-4y}} \right.  \\  \\  \left \{ {{x=-2y+5} \atop {2y^2-5y+3=0}} \right.  \\  \\ D=1 \\  \\  y_{1} =(5-1)/4=1 \\  x_{1} =-2+5=3 \\  \\  y_{2} =(5+1)/4=1.5 \\  x_{2} =2 \\  \\ OTVET:(3;1)(2;1.5)
Похожие вопросы
Предмет: География, автор: samiranorway11082008