Предмет: Математика,
автор: оля50
Радиус описанной вокруг треугольника АВС с тупым углом при вершине С окружности равен корню из 13. Длина стороны АВ равна корню из 39 , а длина стороны ВС в три раза больше длины стороны АС. Найти длины сторон АС и ВС.
Ответы
Автор ответа:
1
R=√13; АВ=√39; AC=x; BC=3x;
AC - ?; BC - ?;
Радиус описанной вокруг треугольника окружности находится по формуле:
R=AB/2SinC;
SinC=AB/2R;
SinC=√39/2√13;
Найдем CosC по основному тригонометрическому тождеству:
(SinC)^2 + (CosC)^2=1;
(CosC)^2=1-(√39/2√13)^2;
(CosC)^2=1 - 39/52=13/52=0,25;
CosC=-√0,25=-0,5 (берём c минусом, так как угол С тупой);
По теореме косинусов:
(√39)^2=(3х)^2+х^2-2*3х*х*(-0,5);
39=9х^2+х^2+3х^2;
х^2=3;
х=√3 (отрицательный корень не нужен);
сторона АС равна √3;
сторона ВС равна 3х=3√3;
Ответ: √3; 3√3
AC - ?; BC - ?;
Радиус описанной вокруг треугольника окружности находится по формуле:
R=AB/2SinC;
SinC=AB/2R;
SinC=√39/2√13;
Найдем CosC по основному тригонометрическому тождеству:
(SinC)^2 + (CosC)^2=1;
(CosC)^2=1-(√39/2√13)^2;
(CosC)^2=1 - 39/52=13/52=0,25;
CosC=-√0,25=-0,5 (берём c минусом, так как угол С тупой);
По теореме косинусов:
(√39)^2=(3х)^2+х^2-2*3х*х*(-0,5);
39=9х^2+х^2+3х^2;
х^2=3;
х=√3 (отрицательный корень не нужен);
сторона АС равна √3;
сторона ВС равна 3х=3√3;
Ответ: √3; 3√3
Похожие вопросы
Предмет: Математика,
автор: dominikacoj935
Предмет: Алгебра,
автор: ng266183
Предмет: Українська мова,
автор: annakapitul
Предмет: Химия,
автор: adelinaastin
Предмет: Литература,
автор: 585687