Предмет: Алгебра,
автор: bigvanyasha
Памагити! Больше часа сижу над этим уравнением и хз((
(№57)
2sin^2(x)-2cos(2x)-sin2x=0
Приложения:
iosiffinikov:
Думаю там опечатка. Решение очень некрасивое.
Ответы
Автор ответа:
1
2Sin²x - 2Cos2x - Sin2x= 0
2Sin²x - 2(Cos²x - Sin²x) - Sin2x = 0
2Sin²x - 2Cos²x + 2Sin²x - 2SinxCosx = 0
4Sin²x - 2SinxCosx - 2Cos²x = 0
2Sin²x - SinxCosx - Cos²x = 0
Разделим почленно на Cos²x , Cosx ≠ 0
2tg²x - tgx - 1 = 0
tgx = 1 tgx = - 1/2
x = π/4 + πn , n ∈ z x = - arctg1/2 + πn , n ∈ z![-6 \pi \leq \frac{ \pi }{4}+ \pi n \leq - \frac{9 \pi }{2} \\\\- \frac{25 \pi }{4} \leq \pi n \leq - \frac{19 \pi }{4} \\\\- \frac{25}{4} \leq n \leq -\frac{19}{4}\\\\n=-5\\\\x= \frac{ \pi }{4} -5 \pi =- \frac{19 \pi }{4} \\\\n=-6\\\\x= \frac{ \pi }{4}-6 \pi =- \frac{23 \pi }{4} \\\\\\<br />-6 \pi \leq -arctg \frac{1}{2}+ \pi n \leq - \frac{9 \pi }{2}\\\\-6 \pi +arctg \frac{1}{2} \leq \pi n \leq - \frac{9 \pi }{2}+arctg \frac{1}{2} \\\\-6+ \frac{arctg \frac{1}{2} }{ \pi } \leq n \leq [tex]- \frac{9}{2} + \frac{arctg \frac{1}{2} }{ \pi } \\\\-6 \leq n \leq - \frac{9}{2}<br /><br />[tex]n=-6\\\\x=-arctg \frac{1}{2}-6 \pi \\\\n=-5\\\\x=-arctg \frac{1}{2}-5 \pi -6 \pi \leq \frac{ \pi }{4}+ \pi n \leq - \frac{9 \pi }{2} \\\\- \frac{25 \pi }{4} \leq \pi n \leq - \frac{19 \pi }{4} \\\\- \frac{25}{4} \leq n \leq -\frac{19}{4}\\\\n=-5\\\\x= \frac{ \pi }{4} -5 \pi =- \frac{19 \pi }{4} \\\\n=-6\\\\x= \frac{ \pi }{4}-6 \pi =- \frac{23 \pi }{4} \\\\\\<br />-6 \pi \leq -arctg \frac{1}{2}+ \pi n \leq - \frac{9 \pi }{2}\\\\-6 \pi +arctg \frac{1}{2} \leq \pi n \leq - \frac{9 \pi }{2}+arctg \frac{1}{2} \\\\-6+ \frac{arctg \frac{1}{2} }{ \pi } \leq n \leq [tex]- \frac{9}{2} + \frac{arctg \frac{1}{2} }{ \pi } \\\\-6 \leq n \leq - \frac{9}{2}<br /><br />[tex]n=-6\\\\x=-arctg \frac{1}{2}-6 \pi \\\\n=-5\\\\x=-arctg \frac{1}{2}-5 \pi](https://tex.z-dn.net/?f=-6+%5Cpi++%5Cleq++%5Cfrac%7B+%5Cpi+%7D%7B4%7D%2B+%5Cpi+n+%5Cleq+-+%5Cfrac%7B9+%5Cpi+%7D%7B2%7D+%5C%5C%5C%5C-+%5Cfrac%7B25+%5Cpi+%7D%7B4%7D+%5Cleq++%5Cpi+n+%5Cleq+-+%5Cfrac%7B19+%5Cpi+%7D%7B4%7D+%5C%5C%5C%5C-+%5Cfrac%7B25%7D%7B4%7D++%5Cleq+n+%5Cleq++-%5Cfrac%7B19%7D%7B4%7D%5C%5C%5C%5Cn%3D-5%5C%5C%5C%5Cx%3D++%5Cfrac%7B+%5Cpi+%7D%7B4%7D+-5+%5Cpi+%3D-+%5Cfrac%7B19+%5Cpi+%7D%7B4%7D+%5C%5C%5C%5Cn%3D-6%5C%5C%5C%5Cx%3D+%5Cfrac%7B+%5Cpi+%7D%7B4%7D-6+%5Cpi+%3D-+%5Cfrac%7B23+%5Cpi+%7D%7B4%7D+%5C%5C%5C%5C%5C%5C%3Cbr+%2F%3E-6+%5Cpi++%5Cleq+-arctg+%5Cfrac%7B1%7D%7B2%7D%2B+%5Cpi+n+%5Cleq+-+%5Cfrac%7B9+%5Cpi+%7D%7B2%7D%5C%5C%5C%5C-6+%5Cpi+%2Barctg+%5Cfrac%7B1%7D%7B2%7D+%5Cleq++%5Cpi+n+%5Cleq+-+%5Cfrac%7B9+%5Cpi+%7D%7B2%7D%2Barctg+%5Cfrac%7B1%7D%7B2%7D+%5C%5C%5C%5C-6%2B+%5Cfrac%7Barctg+%5Cfrac%7B1%7D%7B2%7D+%7D%7B+%5Cpi+%7D++%5Cleq+n+%5Cleq+%5Btex%5D-+%5Cfrac%7B9%7D%7B2%7D+%2B+%5Cfrac%7Barctg+%5Cfrac%7B1%7D%7B2%7D+%7D%7B+%5Cpi+%7D+%5C%5C%5C%5C-6+%5Cleq+n+%5Cleq+-+%5Cfrac%7B9%7D%7B2%7D%3Cbr+%2F%3E%3Cbr+%2F%3E%5Btex%5Dn%3D-6%5C%5C%5C%5Cx%3D-arctg+%5Cfrac%7B1%7D%7B2%7D-6+%5Cpi+%5C%5C%5C%5Cn%3D-5%5C%5C%5C%5Cx%3D-arctg+%5Cfrac%7B1%7D%7B2%7D-5+%5Cpi+++)
2Sin²x - 2(Cos²x - Sin²x) - Sin2x = 0
2Sin²x - 2Cos²x + 2Sin²x - 2SinxCosx = 0
4Sin²x - 2SinxCosx - 2Cos²x = 0
2Sin²x - SinxCosx - Cos²x = 0
Разделим почленно на Cos²x , Cosx ≠ 0
2tg²x - tgx - 1 = 0
tgx = 1 tgx = - 1/2
x = π/4 + πn , n ∈ z x = - arctg1/2 + πn , n ∈ z
Похожие вопросы
Предмет: Математика,
автор: anzhelika123t
Предмет: ОБЖ,
автор: misaddjusted
Предмет: Математика,
автор: sharapovatut
Предмет: Математика,
автор: Rusttov