Предмет: Алгебра,
автор: Skat23
2 вариант, прошу вас помогите. На теме не был , а завтра с.р. Спасибо
Приложения:
Ответы
Автор ответа:
2
1) 3tgx = √3
tgx = √3/3
x = arctg√3/3 + πk , k ∈ Z
x =π/6 + πk , k ∈ Z
2)2arcSinx = -√2
arcSinx = -√2/2
x = -π/4
3)Cos3x = 4/3
∅
4)Cos²x +Cosx -2 = 0
Cosx = t
t² + t - 2 = 0
по т. Виета корни -2 и 1
а)Сosx = -2 б) Cosx = 1
∅ x = 2πk , k ∈Z
5)Sinx = -Cosx = 0 | : Cosx
tgx = -1
x = -π/4 + πk , k ∈Z
6) 1 + Cosx +√3Cosx/2 = 0
1 + 2Cos²x/2 -1 + √3Cosx/2 = 0
Cosx/2(2Cosx/2 + √3) = 0
Cosx/2 = 0 или 2Cosx/2 + √3 = 0
x/2 = π/2 + πk , k ∈Z Cosx/2 = -√3/2
x = π +2πk , k ∈Z x/2 = +-arcCos(-√3/2) + 2πn , n ∈Z
x/2 = +-5π/6 + 2πn , n ∈Z
x = +-5π/3 +4πn , n ∈ Z
7) Cosx + Cos3x = 0
2Cos2xCosx = 0
Cos2x = 0 или Cosx = 0
2x = π/2 + πk , k ∈Z x = π/2 + πn , n ∈Z
x = π/4 + πk/2 , k ∈Z
8)6Cos²x +5Sinx = 7
6(1 - Sin²x) + 5Sinx -7 = 0
-6Sin²x + 5Sinx -1 = 0
Sinx = t
6t² -5t +1 = 0
t = 1/2 t = 1/3
a) Sinx = 1/2 б) Sinx = 1/3
x = (-1)^n*π/6 + nπ, n ∈Z x = (-1)^k*arcSin1/3 + kπ, k ∈Z
9)Cos3xCos2x + Sin3xSin2x = 0
Cosx = 0
x = π/2 + πk , k ∈Z
10) Sinx -Cosx = 0|:Сosx≠0
tgx -1 = 0
tgx = 1
x = π/4 + πk , k ∈Z
в промежуток (0;2π) попадут корни π/4 и 5π/4
11) Соs2x + Cos4x + Cos6x = 0
2Cos4xCos2x + Cos4x = 0
Cos4x(2Cos2x +1) = 0
Cos4x = 0 или 2Cos2x +1 = 0
4x = π/2 + πk , k ∈Z 2Cos2x = -1
x = π/8 +πk/4, k ∈ Z Cos2x = -1/2
2x = +-arcCos(-1/2) + 2πn , n∈Z
2x = +-2π/3 + 2πn , n ∈Z
x = +-π/3 + πn , n ∈ Z
12) √3 Cos²3x + Sin6x -√3Sin²3x = 0
√3(Cos²3x -Sin²3x) + Sin6x = 0
√3Cos6x + Sin6x = 0 | : Cos6x≠0
√3 + tg6x = 0
tg6x = -√3
6x = π/3 + πk , k ∈Z
x = π/18 + πk/6 , k ∈Z
tgx = √3/3
x = arctg√3/3 + πk , k ∈ Z
x =π/6 + πk , k ∈ Z
2)2arcSinx = -√2
arcSinx = -√2/2
x = -π/4
3)Cos3x = 4/3
∅
4)Cos²x +Cosx -2 = 0
Cosx = t
t² + t - 2 = 0
по т. Виета корни -2 и 1
а)Сosx = -2 б) Cosx = 1
∅ x = 2πk , k ∈Z
5)Sinx = -Cosx = 0 | : Cosx
tgx = -1
x = -π/4 + πk , k ∈Z
6) 1 + Cosx +√3Cosx/2 = 0
1 + 2Cos²x/2 -1 + √3Cosx/2 = 0
Cosx/2(2Cosx/2 + √3) = 0
Cosx/2 = 0 или 2Cosx/2 + √3 = 0
x/2 = π/2 + πk , k ∈Z Cosx/2 = -√3/2
x = π +2πk , k ∈Z x/2 = +-arcCos(-√3/2) + 2πn , n ∈Z
x/2 = +-5π/6 + 2πn , n ∈Z
x = +-5π/3 +4πn , n ∈ Z
7) Cosx + Cos3x = 0
2Cos2xCosx = 0
Cos2x = 0 или Cosx = 0
2x = π/2 + πk , k ∈Z x = π/2 + πn , n ∈Z
x = π/4 + πk/2 , k ∈Z
8)6Cos²x +5Sinx = 7
6(1 - Sin²x) + 5Sinx -7 = 0
-6Sin²x + 5Sinx -1 = 0
Sinx = t
6t² -5t +1 = 0
t = 1/2 t = 1/3
a) Sinx = 1/2 б) Sinx = 1/3
x = (-1)^n*π/6 + nπ, n ∈Z x = (-1)^k*arcSin1/3 + kπ, k ∈Z
9)Cos3xCos2x + Sin3xSin2x = 0
Cosx = 0
x = π/2 + πk , k ∈Z
10) Sinx -Cosx = 0|:Сosx≠0
tgx -1 = 0
tgx = 1
x = π/4 + πk , k ∈Z
в промежуток (0;2π) попадут корни π/4 и 5π/4
11) Соs2x + Cos4x + Cos6x = 0
2Cos4xCos2x + Cos4x = 0
Cos4x(2Cos2x +1) = 0
Cos4x = 0 или 2Cos2x +1 = 0
4x = π/2 + πk , k ∈Z 2Cos2x = -1
x = π/8 +πk/4, k ∈ Z Cos2x = -1/2
2x = +-arcCos(-1/2) + 2πn , n∈Z
2x = +-2π/3 + 2πn , n ∈Z
x = +-π/3 + πn , n ∈ Z
12) √3 Cos²3x + Sin6x -√3Sin²3x = 0
√3(Cos²3x -Sin²3x) + Sin6x = 0
√3Cos6x + Sin6x = 0 | : Cos6x≠0
√3 + tg6x = 0
tg6x = -√3
6x = π/3 + πk , k ∈Z
x = π/18 + πk/6 , k ∈Z
Похожие вопросы
Предмет: Английский язык,
автор: liloki1903
Предмет: Українська мова,
автор: katkaburak01
Предмет: Українська мова,
автор: Аноним
Предмет: Математика,
автор: Alinka8905
Предмет: Математика,
автор: POMOGITE1111111119