Предмет: Алгебра, автор: RAMMER1806

постройте график функции у=(х+1)(х^2-4х+3)/х-1 и найдите все прямые проходящее через начало координат которые имеют с этим графиком ровно одну общую точку изобразите эти прямые и запишите эти уравнения

Ответы

Автор ответа: Удачник66
1
Построить я на телефоне не могу, но могу объяснить.
y=(x+1)(x^2-4x+3)/(x-1)=(x+1)(x-1)(x-3)/(x-1)
Скобки (x-1) можно сократить, и останется обычная парабола
y=(x+1)(x-3)=x^2-2x-3
Но в исходной функции стоит (x-1) в знаменателе, значит, х не =1.
То есть в параболе y=x^2-2x-3 выколота точка (1;-4).
Это так называемый устранимый разрыв.
Но эта точка является вершиной параболы.
1) Прямая, проходящая через О(0;0) и А(1;-4) имеет вид: f(x)=-4x.
Она пересекается с параболой в точке
x^2-2x-3=-4x
x^2+2x-3=0
x1=1 (выколота, не пересекается)
x2=-3 (пересекается). y(-3)=12.
2) Ось Oy (прямая x=0) пересекается с параболой в одной точке (0;-3).
3) Самая трудная часть.
Приравняем параболу и прямую, найдём, в каких точках они пересекаются.
x^2-2x-3=kx
x^2-(k+2)*x-3=0
D=(k+2)^2-4*1(-3)= k^2+4k+4+12= k^2+4k+16>0 при любом k
Значит, это уравнение всегда имеет 2 корня, то есть прямая пересекается с параболой в 2 точках.
Ответ: Две прямые x=0 и y=-4x пересекаются с графиком в одной точке.
Похожие вопросы