Предмет: Алгебра,
автор: xroev
при каких значениях а оба корня уравнения x^-(a-1)x+a+4=0 отрицательные
xroev:
x^2-(a+1)x+a+4 X в квадрате, 2 потерялась
Ответы
Автор ответа:
2
1) Чтобы оба корня уравнения были отрицательными, надо сначала потребовать, чтобы они были. То есть, чтобы дискриминант этого уравнения был неотрицательным.
D=(a-1)²-4·(a+4)=a²-2a+1-4a-16=a²-6a-15≥0
a≥3+2√6 или a≤3-2√6
2) Это уравнение приведенное. Воспользуемся теоремой Виета. Известно, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
3) Так оба корня отрицательные, то их сумма также отрицательная, то есть
a-1<0⇒ a<1
4) Так как оба корня отрицательные, то их произведение положительное, то есть
a+4>0 ⇒a>- 4
5) Собирая все ограничения вместе, получим, что а∈ (- 4; 3-2√6)
D=(a-1)²-4·(a+4)=a²-2a+1-4a-16=a²-6a-15≥0
a≥3+2√6 или a≤3-2√6
2) Это уравнение приведенное. Воспользуемся теоремой Виета. Известно, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
3) Так оба корня отрицательные, то их сумма также отрицательная, то есть
a-1<0⇒ a<1
4) Так как оба корня отрицательные, то их произведение положительное, то есть
a+4>0 ⇒a>- 4
5) Собирая все ограничения вместе, получим, что а∈ (- 4; 3-2√6)
Похожие вопросы
Предмет: Геометрия,
автор: punejkodiana
Предмет: Биология,
автор: arinakustova091
Предмет: Математика,
автор: zumahanovafarida6
Предмет: Математика,
автор: liudmilamiroshnick
Предмет: Математика,
автор: ираданана