Предмет: Геометрия,
автор: vika2236
з точки що лежить на відстані 12 см від прямої проведено дві похилі завдовжки 13 см і 20 см. знайдіть відстань між основами цих похилих. скільки розв'язків має задача?
Ответы
Автор ответа:
5
Задача має два розв'язки.
1) Нехай до прямої а з точки М проведено перпендикуляр МК=12 см.
Х точки М проведено дві похилі, які лежать по один бік від перпендикуляра МК: МА=13 см і МВ=20 см. Утворилося два прямокутні трикутники: ΔМАК і ΔМВК. Розглянемо ΔМАК. АК²=АМ²-МК²=169-144=25; АК=√25=5 см.
Розглянемо ΔАМВ. ВК²=ВМ²-МК²=20²-12²=400-144=256; ВК=√256=16 см. Відстань між основами похилих буде А16-5= 11 см.
2) Похилі лежать по різні стороні від перпендикуляра МК. Розглядаються два прямокутні трикутники . Відстань між основами дорівнюватиме 5+16=21 см.
1) Нехай до прямої а з точки М проведено перпендикуляр МК=12 см.
Х точки М проведено дві похилі, які лежать по один бік від перпендикуляра МК: МА=13 см і МВ=20 см. Утворилося два прямокутні трикутники: ΔМАК і ΔМВК. Розглянемо ΔМАК. АК²=АМ²-МК²=169-144=25; АК=√25=5 см.
Розглянемо ΔАМВ. ВК²=ВМ²-МК²=20²-12²=400-144=256; ВК=√256=16 см. Відстань між основами похилих буде А16-5= 11 см.
2) Похилі лежать по різні стороні від перпендикуляра МК. Розглядаються два прямокутні трикутники . Відстань між основами дорівнюватиме 5+16=21 см.
Похожие вопросы
Предмет: Химия,
автор: lajsanyon7
Предмет: Английский язык,
автор: sveta3115
Предмет: Математика,
автор: erichkaa7a
Предмет: Физика,
автор: mollen