Предмет: Алгебра, автор: polyamigneva

Решите логарифмическое неравенство

Приложения:

Ответы

Автор ответа: kolesnik80
1
Область допустимых значений аргумента: х>0.
Сделаем замену: log2(х)=а, получим
а²-3а≤4    перенесём вправо четвёрку
а²-3а-4≤0       решим
(а-4)(а+1)≤0, то есть решением будут значения а∈[-1;4].
Делаем обратную замену и получим
-1≤log2(х)≤4      прологарифмируем
log2(1/2)≤log2(х)≤log2(16)   поскольку основание 2>1, то
1/2≤х≤16. Из этих решений ОДЗ удовлетворяют все.
Ответ: х∈[0,5;16].

Похожие вопросы
Предмет: Алгебра, автор: bubnhioam701