Предмет: Алгебра,
автор: рыбка53
решите неравенства
5х (3+х)(х-9)<0
пожалуйста
Ответы
Автор ответа:
0
Метод интервалов.
Найдём при каких х каждый множитель неравенства =0
5х = 0 3+х = 0 х - 9 = 0
х =0 х = -3 х = 9
Отметим найденные числа на числовой прямой
-∞ - -3 + 0 - 9 + +∞ Получили 4 интервала
- - + + это знаки множителя 5х
- + + + это знаки множителя (3 + х)
- - - + это знаки множителя (х - 9)
На каждом интервале поставили общий знак и можно писать ответ:
х∈(-∞; -3)∨(0; 9)
Или же
5x(3+x)(x+9) < 0
(5x+5x²)(x+9)<0
5x³+50x²+45<0
x²+10x+9<0
D=100-36=64
x1=-10+8/2=-1
x2=-10-8/2=-9
Найдём при каких х каждый множитель неравенства =0
5х = 0 3+х = 0 х - 9 = 0
х =0 х = -3 х = 9
Отметим найденные числа на числовой прямой
-∞ - -3 + 0 - 9 + +∞ Получили 4 интервала
- - + + это знаки множителя 5х
- + + + это знаки множителя (3 + х)
- - - + это знаки множителя (х - 9)
На каждом интервале поставили общий знак и можно писать ответ:
х∈(-∞; -3)∨(0; 9)
Или же
5x(3+x)(x+9) < 0
(5x+5x²)(x+9)<0
5x³+50x²+45<0
x²+10x+9<0
D=100-36=64
x1=-10+8/2=-1
x2=-10-8/2=-9
Похожие вопросы
Предмет: История,
автор: vkozulya26041972
Предмет: Информатика,
автор: kvetun17
Предмет: Литература,
автор: kanan6354
Предмет: Математика,
автор: наст2
Предмет: География,
автор: марк30