Предмет: Математика,
автор: Аноним
на доске написано несколько целых чисел , среди которых есть число 2018 . Как сумма , так и произведение всех этих чисел равны 2018 . Сколько чисел может быть написано на доске?
а)2016 б)2017 в)2018 г)2019 д)2020
Аноним:
вообще не понимаю)пожалуйстааааа....
Ответы
Автор ответа:
108
Если умножить число 2018 на некоторое целое число , то для возвращения к исходному числу 2018 придется выполнить умножение на число , которое будет являться дробным. Значит, другие числа по модулю не больше 1. Нулевых чисел также быть не может, так как в этом случае произведение будет равно 0.
Число 2018 без каких-либо проблем можно умножать на 1 неограниченное число раз, однако, при такой операции меняется сумма чисел. Тогда, необходимо выполнить умножение числа на 1 и на (-1), тогда сумма чисел сохранится, но знак произведения изменится на противоположный. Следовательно, нужно еще раз выполнить умножение на 1 и на (-1), только тогда и произведение и сумма останутся прежними.
Итак, к числу 2018 добавилась четверка чисел: (1, 1, -1, -1), которые в сумме между собой дают 0, а в произведении - единицу. Таких четверок можно дописать сколь угодно много, а значит количество чисел на доске можно выразить формулой:
, где k - количество четверок (1, 1, -1, -1)
Из предложенных чисел только число 2017 при делении на 4 дает остаток 1.
Ответ: 2017
Число 2018 без каких-либо проблем можно умножать на 1 неограниченное число раз, однако, при такой операции меняется сумма чисел. Тогда, необходимо выполнить умножение числа на 1 и на (-1), тогда сумма чисел сохранится, но знак произведения изменится на противоположный. Следовательно, нужно еще раз выполнить умножение на 1 и на (-1), только тогда и произведение и сумма останутся прежними.
Итак, к числу 2018 добавилась четверка чисел: (1, 1, -1, -1), которые в сумме между собой дают 0, а в произведении - единицу. Таких четверок можно дописать сколь угодно много, а значит количество чисел на доске можно выразить формулой:
, где k - количество четверок (1, 1, -1, -1)
Из предложенных чисел только число 2017 при делении на 4 дает остаток 1.
Ответ: 2017
Похожие вопросы
Предмет: Математика,
автор: Frendly6Man
Предмет: География,
автор: mavrodikamila
Предмет: Биология,
автор: platonovaludmi
Предмет: Литература,
автор: Димаолесядима