Предмет: Алгебра,
автор: irina20020202
Вычислить производную функции.
а) f(x)=3x(x³+5)
б) f(x)=x²/x⁴+1
в) f(x)=2x^5-4x³+6x²-11
г) f(x)=(x³+3)^7
Ответы
Автор ответа:
0
a)f'(x)=(3x)'(x^3+5)+(x^3+5)'•3x=
3x^3+15+9x^3=12x^3+15
2)f'(x)=(x^2/(x^4+1))'=((x^2)'(x^4+1)-((x^4+1)'x^2):
(x^4+1)^2=
(2x^5+2x-4x^5)/((x^4+1)^2)=(2x-2x^5)/(x^4+1)^2
3)f'(x)=10x^4-12x^2+12x
4)f'(x)=((x^3+3)^7)'=7(x^3+3)^6*(x^3+3)'=
21(x^3+3)^6*x^2
3x^3+15+9x^3=12x^3+15
2)f'(x)=(x^2/(x^4+1))'=((x^2)'(x^4+1)-((x^4+1)'x^2):
(x^4+1)^2=
(2x^5+2x-4x^5)/((x^4+1)^2)=(2x-2x^5)/(x^4+1)^2
3)f'(x)=10x^4-12x^2+12x
4)f'(x)=((x^3+3)^7)'=7(x^3+3)^6*(x^3+3)'=
21(x^3+3)^6*x^2
Похожие вопросы